Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:32:18.252Z Has data issue: false hasContentIssue false

Diffusion Enhancement in Glassy Metals Under Non-Equilibrium Conditions

Published online by Cambridge University Press:  15 February 2011

G. Mazzone
Affiliation:
also Istituto di Fisica della Materia, Unità di Perugia, PERUGIA, ITALY
A. Montone
Affiliation:
Settore Nuovi Materiali, C.P.2400, 00100 ROMA, ITALY
M. Vittori-antisari Enea
Affiliation:
Settore Nuovi Materiali, C.P.2400, 00100 ROMA, ITALY
C.R. Casaccia
Affiliation:
Settore Nuovi Materiali, C.P.2400, 00100 ROMA, ITALY
Get access

Abstract

The diffusion properties of a Ni-Zr metallic glass formed at the interface of a bulk diffusion couple have been studied in conditions far from a fully relaxed state. The growth kinetics of the interface film have been enhanced by both plastic deformation and high energy electron irradiation. Different results have been obtained in the two cases, since in the first case the film grows exponentially with time, while in the second case the usual square root dependence on time is observed. This behaviour has been interpreted as a consequence of the annihilation kinetics of the excess free volume introduced in the glass by the above methods. Two different mechanisms of free volume annihilation , namely exchange with a crystal vacancy at the glass-crystal interface and structural relaxation in the bulk glassy phase have been considered to be operative so that the nature of the growth kinetics has been found to depend on the mechanism predominant in each experimental condition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Van den Beukel, A., Acta Metall.Mater. 39,2709, (1991).Google Scholar
2) Cohen, M.H. and Tumbull, D., J.Chem.Phys. 31, 1164, (1959).Google Scholar
3) Tumbull, D. and Cohen, M.H., J.Chem.Phys. 52, 3038, (1970).Google Scholar
4) Spaepen, F., Acta Metall. 25, 407, (1977).Google Scholar
5) Sizmann, R., J.Nucl.Mater., 69&70, 386, (1968).Google Scholar
6) Mazzone, G., Montone, A. and Vittori-Antisai, M., Phys.Rev.Lett. 53, 2019, (1990).Google Scholar
7) Mazzone, G., Montone, A. and Vittori-Antisari, M., Mat.Res.Soc.Symp.Proc. 230, 27, (1992).Google Scholar
8) Mazzone, G., Montone, A. and Vittori-Antisari, M.,Scripta Metall.Mater. 28, 821, (1993).Google Scholar
9) Bellini, S., Montone, A. and Vittori-Antisari, M., Phys.Rev. B 50, 14, 9803, (1994).Google Scholar
10) Martelli, S., Mazzone, G., Montone, A. and Vittori-Antisari, M.,J.Phys.(Paris),Colloq. 51,C4, 241 (1990).Google Scholar
11) Xu, G.B., Meshii, M., Okamoto, P.R., Rehn, L.E., J.AIIoys and Comp. 194, 401, (1993).Google Scholar
12) Norris, D.I.R., in Electron Microscopy in Material Science. Edited by Ruedl, E. and Valdre, U. Eds. (Commission of the European Communities, Luxembourg 1975)p.1099.Google Scholar
13) Gosele, U. and Tu, K.N., J.Appl. Phys. 53, 3252, (1982).Google Scholar
14) Rong Ding, Fu, Averback, R.S., and Hahn, H., J.Appl.Phys. 64, 1785, (1988).Google Scholar
15) Averback, R.S., and Hahn, H., Phys.Rev. B 37, 10383, (1988).Google Scholar
16) Taub, A.I. and Spaepen, F., Acta Metall. 28, 1781, (1980).Google Scholar
17) Van den Beukel, A., Phys.Stat.Sol. 128,285,(1991).Google Scholar