Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:19:53.691Z Has data issue: false hasContentIssue false

Development of High Efficiency Thin Film Polycrystalline Silicon Solar Cells using Vest Process

Published online by Cambridge University Press:  10 February 2011

T. Ishihara
Affiliation:
Nakatsugawa Works, Mitsubishi Electric Corporation, Hyogo, JAPAN
S. Arimoto
Affiliation:
Nakatsugawa Works, Mitsubishi Electric Corporation, Hyogo, JAPAN
H. Morikawa
Affiliation:
Nakatsugawa Works, Mitsubishi Electric Corporation, Hyogo, JAPAN
Y. Nishimoto
Affiliation:
Nakatsugawa Works, Mitsubishi Electric Corporation, Hyogo, JAPAN
Y. Kawama
Affiliation:
Nakatsugawa Works, Mitsubishi Electric Corporation, Hyogo, JAPAN
A. Takami
Affiliation:
Nakatsugawa Works, Mitsubishi Electric Corporation, Hyogo, JAPAN
S. Hamamoto
Affiliation:
Nakatsugawa Works, Mitsubishi Electric Corporation, Hyogo, JAPAN
H. Naomoto
Affiliation:
Nakatsugawa Works, Mitsubishi Electric Corporation, Hyogo, JAPAN
K. Namba
Affiliation:
Nakatsugawa Works, Mitsubishi Electric Corporation, Hyogo, JAPAN
Get access

Abstract

Thin film Si solar cell has been developed using Via-hole Etching for the Separation of Thin films(VEST) process. The process is based on SOI technology of zone-melting recrystallization (ZMR) followed by chemical vapor deposition (CVD), separation of thin film, and screen printing. Key points for achieving high efficiency are (1)quality of Si films, (2)back surface emitter (BSE), (3)front surface emitter etch-back process, (4)back surface field (BSF) layer thickness and its resistivity, and (5)defect passivation by hydrogen implantation. As a result of experiments, we have achieved 16% efficiency(Voc:0.589V, Jsc:35.6mA/cm2, F.E:0.763) with a cell size of 95.8cm2 and the thickness of 77μm. It is the highest efficiency ever reported for large area thin film Si solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matsuyama, T., Baba, T., Takahama, T., Tsuda, S., and Nakano, S., Technical Digest of Int'l PVSEC-7, 447448(1993).Google Scholar
2. Ciszek, T. F. and Hurd, J. L., Conf. Record 14th IEEE Photovoltaic Specialists Conf., San Diego, CA, 397399(1980).Google Scholar
3. Grabmaier, J. G., Falckenberg, R., Kruhler, W. W., and Lutz, F., Proc. 2nd Int'l Photovoltaic Sci. Eng. Conf., 174177(1986).Google Scholar
4. Tamura, F., Okayasu, Y., and Kumagai, K., Technical Digest of Int'l PVSEC-7, 237238(1993).Google Scholar
5. Yamamoto, K., Suzuki, T., Kondo, K., Okamoto, T., Yamaguchi, M., and Tawada, Y., Solar Energy Mater. & Solar Cells, 34, 501(1994)Google Scholar
6. Ishii, K., Nishikawa, H., Takahashi, T., and Hayashi, Y., Jpn., J. Appl. Phys. 32, L770773(1993).Google Scholar
7. Barnett, A. M., Bloothoofd, W., Checchi, J. C., Collins, S.R., Ford, D. H., Hall, R. B., Kendall, C. L., Lampo, S. M., Rand, J. A, Trabant, A. M., and Cotter, J. E., Proc. 12th E.C. Photovoltaic Sol. Energy. Conf., 18111814 (1994).Google Scholar
8. Chu, T. L., Chu, S. S., and Stokes, E. D., Sol. Energy Mater. 2, 265275(1979/1980).Google Scholar
9. Warabisako, T., Saitoh, T., Itoh, H., Nakamura, N., and Tokuyama, T., Proc. of 9th Conf. on Solid-State Devices, Tokyo, 1977; Jpn. J. Appl. Phys., Vol.17 Suppl. 17–1, 309–314(1978).Google Scholar
10. Deguchi, M., Kawama, Y., Matsuno, Y., Nishimoto, Y., Morikawa, H., Arimoto, S., Kumabe, H., and Murotani, T., Proc. of 1st World Conf. on Photovoltaic Energy Conversion, 1287–1280(1994)Google Scholar
11. Geis, M. W., Smith, H. I., Tsaur, B-Y., Fan, J. C. C., Silversmith, D. J., and Mountain, R. W., J. Electrochem. Soc. 129, 28122818 (1982).Google Scholar
12. Ishihara, T., Arimoto, S., Kumabe, H., and Murotani, T., Prog. in Photovoltaics: Research and Applications, Vol.3, 105113(1995)Google Scholar