Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T20:26:25.806Z Has data issue: false hasContentIssue false

Design of a New Reactor to Work at Low Volume Liquid/Surface Solid Ratio and High Pressure and Temperature: Dissolution Rate Studies of UO2 Under Both Anoxic and Reducing Conditions.

Published online by Cambridge University Press:  01 July 2014

A. Martínez-Torrents
Affiliation:
CTM Centre Tecnològic, Plaça de la ciència 2, 08243 Manresa, Spain Departament of Chemical Engineering, Universitat Politècnica de Catalunya, Diagonal 647 H-4, 08028 Barcelona, Spain.
J. Giménez
Affiliation:
Departament of Chemical Engineering, Universitat Politècnica de Catalunya, Diagonal 647 H-4, 08028 Barcelona, Spain.
I. Casas
Affiliation:
Departament of Chemical Engineering, Universitat Politècnica de Catalunya, Diagonal 647 H-4, 08028 Barcelona, Spain.
J. de Pablo
Affiliation:
CTM Centre Tecnològic, Plaça de la ciència 2, 08243 Manresa, Spain Departament of Chemical Engineering, Universitat Politècnica de Catalunya, Diagonal 647 H-4, 08028 Barcelona, Spain.
Get access

Abstract

A flow-through experimental reactor has been designed in order to perform studies at both high pressure and high temperature conditions. A chromatographic pump is used to impulse the leachant throughout the reactor in order to work at very low flows but high pressures. Therefore, high surface solid to volume leachant ratios, similar to the ones predicted in the final repository, can be obtained. The reactor allows working at different atmospheres at pressures up to 50 bars. The temperature inside the reactor can be set using a jacket.

Using this new reactor the evolution of uranium concentrations released from an UO2 sample was studied at different conditions.

The results show that at hydrogen pressures between 5 and 7 bars, hydrogen peroxide does not seem to significantly oxidize the uranium (IV) oxide. Uranium concentrations in those experiments remain between 10-8 mol·l-1 and 10-9 mol·l-1.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES.

Casas, I., Giménez, J., Martí, V., Torrero, M.E. and de Pablo, J.. Radiochim. Acta 66/67 2327 (1994).Google Scholar
Casas, I., de Pablo, J., Giménez, J., Torrero, M.E., Bruno, J., Cera, E., Finch, R.J. and Ewing, R.C.. Geochim. Cosmochim. Acta 62 13 22232231 (1998).10.1016/S0016-7037(98)00140-9CrossRefGoogle Scholar
de Pablo, J, Casas, I., Giménez, J., Molera, M., Rovira, M., Duro, L. and Bruno, J.. Geochim. Cosmochim. Acta 63 19/20 30973103 (1999).10.1016/S0016-7037(99)00237-9CrossRefGoogle Scholar
de Pablo, J, Casas, I., Giménez, J., Clarens, F., Duro, L. and Bruno, J.. Mater. Res. Soc. Symp. Proc. 807, 83 (2003).10.1557/PROC-807-83CrossRefGoogle Scholar
Giménez, J., Clarens, F., Casas, I., Rovira, M., de Pablo, J. and Bruno, J.. J. Nucl. Mater. 345 232-238 (2005).10.1016/j.jnucmat.2005.06.003CrossRefGoogle Scholar
Clarens, F., de Pablo, J., Casas, I., Giménez, J., Rovira, M., Merino, J., Cera, E., Bruno, J., Quiñones, J. and Martínez-Esparza, A.. J. Nucl. Mater. 345, 225231 (2005).10.1016/j.jnucmat.2005.06.002CrossRefGoogle Scholar
Casas, I., Borrell, M., Sánchez, L., de Pablo, J., Giménez, J. and Clarens, F.. J. Nucl. Mater. 375, 151156 (2008).10.1016/j.jnucmat.2007.08.021CrossRefGoogle Scholar
Casas, I., de Pablo, J., Clarens, F., Gimenez, J., Merino, J., Bruno, J. and Martinez-Esparza, A.. Radiochim. Acta 97, 9, 485490 (2009).10.1524/ract.2009.1641CrossRefGoogle Scholar
Gray, W. J. and Wilson, C. N. (1995) Spent fuel dissolution studies: FY1991 to 1994. Report PNL-10540 (USA).10.2172/205055CrossRefGoogle Scholar
Röllin, S., Spahiu, K. and Eklund, U.-B.. J. Nucl. Mater. 297 231243 (2001).10.1016/S0022-3115(01)00645-6CrossRefGoogle Scholar
Serrano-Purroy, D., Clarens, F., Glatz, J.-P-, Christiansen, B., de Pablo, J., Giménez, J., Casas, I., Martínez-Esparza, A.. Radiochim. Acta 97, 491496 (2009).10.1524/ract.2009.1640CrossRefGoogle Scholar
Serrano-Purroy, D., Casas, I., González-Robles, E., Glatz, J.P., Wegen, D.H., Clarens, F., Giménez, J., de Pablo, J., Martínez-Esparza, A.. Journal Nuclear Materials 434, 451460 (2013).10.1016/j.jnucmat.2011.03.020CrossRefGoogle Scholar
Wronkiewicz, D.J., Bates, J.K., Wolf, S.F. and Buck, E.C.. J. Nucl. Mater. 7895 (1996).10.1016/S0022-3115(96)00383-2CrossRefGoogle Scholar
Jung, K.W., Kim, J.M., Kim, C.J. and Lee, J.M.. J. Korean Nucl. Soc. 19, 4, 242248, (1987).Google Scholar
Giménez, J., Casas, I., Sureda, R. and de Pablo, J.. Radiochim. Acta 100 445448 (2012).10.1524/ract.2012.1940CrossRefGoogle Scholar
de Pablo, J, Casas, I., Clarens, F., Giménez, J., and Rovira, M. (2003). Vol. 1. Publicaciones técnicas, ENRESA, SPAIN.Google Scholar
Iglesias, E., Quiñones, J., Pérez de Andrés, S., Cobo, J. M. and Alcaide, J.. (2005) DFN/RR-02/SP-05, CIEMAT.Google Scholar
Spahiu, K., Werme, L. and Eklund, U.-B.. Radiochim. Acta 88 507511 (2000).10.1524/ract.2000.88.9-11.507CrossRefGoogle Scholar
Neck, V. and Kim, J.I.. Radiochim. Acta 89 116 (2001).10.1524/ract.2001.89.1.001CrossRefGoogle Scholar