Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T03:00:19.696Z Has data issue: false hasContentIssue false

Density functional calculations of the binding energies and adatom diffusion on strained AlN (0001) and GaN (0001) surfaces

Published online by Cambridge University Press:  01 February 2011

Vibhu Jindal
Affiliation:
[email protected], University at Albany, College of Nanoscale Science and Engineering, 255 Fuller Road, University at Albany, Albany, NY, 12203, United States
James Grandusky
Affiliation:
[email protected], University at Albany, College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY, 12203, United States
Neeraj Tripathi
Affiliation:
[email protected], University at Albany, College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY, 12203, United States
Mihir Tungare
Affiliation:
[email protected], University at Albany, College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY, 12203, United States
Fatemeh Shahedipour-Sandvik
Affiliation:
[email protected], University at Albany, College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY, 12203, United States
Get access

Abstract

Density functional theory calculations were carried out to study the binding energies and diffusion barriers for various adatoms on AlN and GaN (0001) surfaces. The binding energies and potential energy surfaces were investigated for Al, Ga, and N adatoms on both Al (Ga) terminated and N terminated (0001) surfaces of AlN (GaN). Calculations for the diffusion paths and diffusion energy barriers for Al, Ga, and N adatoms on AlN and GaN were performed. It was found that the N adatom on N terminated AlN and GaN surfaces faces a high diffusion barrier due to strong N-N bond. The Al and Ga adatom on Al (Ga) terminated AlN (GaN) surfaces showed lower diffusion barriers due to the weak metallic bonds. However, the diffusion barrier for an Al adatom was always larger than that of a Ga adatom on any surface. The surfaces were also subjected to a hydrostatic compressive and tensile strain in the range of 0 to 5% to investigate the effect of strain on diffusion barriers. The diffusion energy barrier for N adatom on N terminated AlN and GaN surfaces decreased when the strain state was changed from tensile to compressive. In contrast, Al and Ga adatoms show continuous increase in diffusion barriers from tensile to compressively strained Al (Ga) terminated AlN (GaN) surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. The Blue Laser Diodes, Nakamura, Shuji, 2nd Ed., Springler-Verlag, (2000)Google Scholar
2. Ishii, Akira, Miyake, Daisuke, Aisaka, Tsuyoshi, Jpn. J. Appl. Phys., 41, L842, (2002)Google Scholar
3. Zhou, X. W., Murdick, D. A., Gillespie, B., Wadley, H. N. G., Phys, Rev. B, 73, 045337, (2006)10.1103/PhysRevB.73.045337Google Scholar
4. Zywietz, Tosja, Neugebauer, Jorg, Scheffler, Matthias, Appl. Phys. Lett. 73, 487, (1998)Google Scholar
5. Neugebauer, J., phys. stat. sol. (b), 227, 93, (2001)10.1002/1521-3951(200109)227:1<93::AID-PSSB93>3.0.CO;2-Y3.0.CO;2-Y>Google Scholar
6. Northrup, John E., Walle, Chris G. Van de, Appl. Phys. Lett., 84, 4322, (2004)Google Scholar
7. Nardelli, Marco Buongiorno, Rapcewicz, Krzysztof, Bernholc, J., Phys. Rev. B, 55, R7323, (1997)10.1103/PhysRevB.55.R7323Google Scholar
8. Penev, Evgeni, Kratzer, Peter, Scheffler, Matthias, Phys. Rev. B, 64, 085401, (2001)Google Scholar
9. Chamard, V., Schulli, T, Sztucki, M., Metzger, T. H., Sarigiannidou, E., Rouviere, J.-L., Tolan, M., Adelmann, C., Daudin, B., Phys. Rev. B, 69, 125327, (2004)Google Scholar
10. Lin, H.Y., Chen, Y.F., Lin, T.Y., Shih, C.F., Liu, K.S., Chen, N.C., J. Crystal Growth, 290, 225, (2006)Google Scholar
11. Kisielowski, C., Kruger, J., Ruvimov, S., Suski, T., Ager, J. W. III, Jones, E., Liliental-Weber, Z., Rubin, M., Weber, E. R., Bremser, M. D., Davis, R. F., Phys. Rev. B, 54, 17745, (1996)Google Scholar
12. Doppalapudi, D., Basu, S. N., Ludwig, K. F. Jr, Moustakas, T. D., J. Appl. Phys., 84, 1389, (1998)Google Scholar
13. Liu, Feng, Li, Adam H., Lagally, M. G., Phys. Rev. Lett., 87, 126013, (2001)Google Scholar
14. Grandusky, J., Jindal, V., Tripathi, N., Tungare, M., Raynolds, J. E., Shahedipour-Sandvik, F., Phys. Rev. B (2007) (submitted)Google Scholar
15. Ceperley, D.M. and Alder, B.J., Phys. Rev. Lett., 45, 566 (1980).10.1103/PhysRevLett.45.566Google Scholar
16. Troullier, N., and Martins, J.L., Phys. Rev. B, 43, 1993 (1991).Google Scholar
17. Kleinman, L. and Bylander, D.M., Phys. Rev. Lett., 48, 1425 (1982).Google Scholar
18. Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., J. Phys. Condens. Matter, 14, 27452779 (2002)Google Scholar
19. Monkhorst, H. J., Pack, J. D., Phys. Rev. B, 13, 5188 (1976).10.1103/PhysRevB.13.5188Google Scholar
20. Schulz, H. and Thiemann, K. H., Solid State Commun., 23, 815 (1977)Google Scholar
21. Qian, W., Skowronski, M., Rohrer, G. R., Mat. Res. Soc. Symp. Proc., Pittsburgh, PA. 423, 475 (1996)Google Scholar