Published online by Cambridge University Press: 01 February 2011
Density functional theory calculations were carried out to study the binding energies and diffusion barriers for various adatoms on AlN and GaN (0001) surfaces. The binding energies and potential energy surfaces were investigated for Al, Ga, and N adatoms on both Al (Ga) terminated and N terminated (0001) surfaces of AlN (GaN). Calculations for the diffusion paths and diffusion energy barriers for Al, Ga, and N adatoms on AlN and GaN were performed. It was found that the N adatom on N terminated AlN and GaN surfaces faces a high diffusion barrier due to strong N-N bond. The Al and Ga adatom on Al (Ga) terminated AlN (GaN) surfaces showed lower diffusion barriers due to the weak metallic bonds. However, the diffusion barrier for an Al adatom was always larger than that of a Ga adatom on any surface. The surfaces were also subjected to a hydrostatic compressive and tensile strain in the range of 0 to 5% to investigate the effect of strain on diffusion barriers. The diffusion energy barrier for N adatom on N terminated AlN and GaN surfaces decreased when the strain state was changed from tensile to compressive. In contrast, Al and Ga adatoms show continuous increase in diffusion barriers from tensile to compressively strained Al (Ga) terminated AlN (GaN) surfaces.