Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T11:21:51.775Z Has data issue: false hasContentIssue false

Concentration-Dependence of Self-Interstitial and Boron Diffusion in Silicon

Published online by Cambridge University Press:  01 February 2011

Wolfgang Windl*
Affiliation:
[email protected], The Ohio State University, Materials Science and Engineering, 2041 College Rd, Columbus, OH, 43210-1178, United States
Get access

Abstract

In this paper, we discuss the accuracy of ab-initio calculations for self-interstitial and boron dif-fusion in silicon in light of recent experimental data by de Salvador et al. and Bracht et al. Map-ping the experimental data onto the activation energy vs. Fermi level representation commonly used to display ab-initio results, we show that the experimental results are consistent with each other. While the theoretical LDA value for the boron activation energy as a function of the Fermi level agrees well with experiment, we find for the self-interstitial in line with other calculations an underestimation of the experimental values, despite using total-energy corrections.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pichler, P., Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon (Springer, 2004).Google Scholar
2. Ural, A., Griffin, P. B., and Plummer, J. D., J. Appl. Phys. 85, 6440 (1999).Google Scholar
3. Zhu, J., Rubia, T. Diaz de la, Yang, L. H., Mailhiot, C., and Gilmer, G. H., Phys. Rev. B 54, 4741 (1996); J. Zhu, Comput. Mater. Sci. 12, 309 (1996).Google Scholar
4. Nichols, C. S., Walle, C. G. Van de, and Pantelides, S. T., Phys. Rev. B 40, 5484 (1989).Google Scholar
5. Jónsson, H., Mills, G., and Jacobsen, K. W., in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by Berne, B. J. et al. (World Scientific, Singapore, 1998), p. 385.Google Scholar
6. Kresse, G. and Hafner, J., Phys. Rev. B 47, 558 (1993); 49, 14251 (1994); G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11169 (1996).Google Scholar
7. Windl, W. et al., Phys. Rev. Lett. 83, 4345 (1999).Google Scholar
8. Salvador, D. De, Napolitani, E., Mirabella, S., Bisognin, G., Impellizzeri, G., Carnera, A., and Priolo, F., Phys. Rev. Lett. 97, 255902 (2006).Google Scholar
9. Bracht, H., Silvestri, H. H., Sharp, I. D., and Haller, E. E., Phys. Rev. B 75, 035211 (2007).Google Scholar
10. Cowern, N. E. B. et al., Phys. Rev. Lett. 65, 2434 (1990).Google Scholar
11. Cowern, N. E. B. et al., Phys. Rev. Lett. 67, 212 (1991).Google Scholar
12. Waite, T. R., Phys. Rev. 107, 463 (1957).Google Scholar
13. Rafferty, C. S. et al., Appl. Phys. Lett. 68, 2395 (1996).Google Scholar
14. Windl, W., Phys. Stat. Sol. (B) 241, 2313 (2004).Google Scholar
15. Watkins, G. D., A Review of EPR Studies in Irradiated Silicon, in Radiation Damage in Semi-conductors (Dunod, Paris, 1964), p. 97.Google Scholar
16. Gwozdz, P. S. and Koehler, J. S., Phys. Rev. B 6, 4571 (1972).Google Scholar
17. Beardmore, K. M., Windl, W., Haley, B. P., and Grønbech-Jensen, N., in Computational Nanoscience and Nanotechnology 2002 (Appl. Comput. Res. Soc., Cambridge, 2002), p. 251.Google Scholar
18. Morin, F. J. and Maita, J. P., Phys. Rev. 96, 28 (1954).Google Scholar
19. Thurmond, C. D., J. Electrochem. Soc. 122, 1133 (1975).Google Scholar
20. Jain, R. K. and Overstraeten, R. J. Van, IEEE Trans. Electron Devices ED-21, 155 (1974).Google Scholar