Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T09:10:14.572Z Has data issue: false hasContentIssue false

Computer Simulation Studies of Fracture in Vitreous Silica

Published online by Cambridge University Press:  01 February 2011

Romulo Ochoa
Affiliation:
Department of Physics, The College of New Jersey Ewing, NJ 08628
Michael Arief
Affiliation:
Department of Physics, The College of New Jersey Ewing, NJ 08628
Joseph H. Simmons
Affiliation:
Department of Materials Science and Engineering, University of Arizona Tucson, AZ 85721
Get access

Abstract

We conduct molecular dynamics computer simulations of fracture in silica glass using the van Beest, Kramer, and van Santen model. Stress is applied by uniaxial strain at different pulling rates. Comparisons with previous fracture simulations of silica that used the Soules force function are presented. We find that in both models stress is relieved by rotation of the (SiO4)-2 tetrahedrons, increasing Si-O-Si bonding angles, and only small changes in the tetrahedron dimensions and O-Si-O angles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Soules, T. F., J. Chem. Phys. 71, 45704578 (1979).Google Scholar
2 Ochoa, R., Swiler, T.P. and Simmons, J.H., J. Non-Cryst. Sol. 128, 5768 (1991).Google Scholar
3 Simmons, J.H., Swiler, T.P. and Ochoa, R., J. Non-Cryst. Sol. 134, 179182 (1991).Google Scholar
4 Swiler, T. P., “Atomic-Scale Dynamic Processes in the Brittle fracture of Silica,” Ph. D. Dissertation, University of Florida, Gainesville (1994).Google Scholar
5 Ochoa, R. and Simmons, J.H., J. Non-Cryst. Sol. 75, 413418 (1985).Google Scholar
6 Beest, B. W. H. van, Kramer, G. J., and Santen, R. A. van, Phys. Rev. Lett. 64 (16) 1955–8 (1990).Google Scholar
7 Taraskin, S. N. and Elliot, S. R., Phys. Rev. B 56 (14), 8605–18 (1997).Google Scholar
8 Vollmayr, K., Kob, W., and Binder, K, Phys. Rev. B 54 (22) 15808–27 (1999).Google Scholar
9 Jund, P. and Jullien, R., Phys. Rev. Lett. 83 (11) 2210–13 (1999).Google Scholar
10 Kob, W., “Computer simulations of supercooled liquids and glasses,” J. Phys.: Conden. Matter 11 R85–R115 (1999) and references therein.Google Scholar
11 Benoit, M., Ispas, S., Jund, P., and Jullien, R., Eur. Phys. J. B 13, 631–36 (2000).Google Scholar
12 Woodcock, L. V., Angell, C. A., and Cheeseman, P., Chem. Phys. 65, 15651577 (1976).Google Scholar
13 Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, Oxford University Press, NY (1990).Google Scholar
14 Smith, W. and Forrester, T. R., CCLRC, Daresbury Laboratory, Warrington, England, version 2.12 (1999).Google Scholar
15 Huff, N., Demiralp, E., Cagin, T., and Goddard, W. A., J.Non-Cryst. Solids 253, 133 (1999).Google Scholar