Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:13:13.575Z Has data issue: false hasContentIssue false

Computational Design, Freeform Fabrication and Testing of Nylon-6 Tissue Engineering Scaffolds

Published online by Cambridge University Press:  11 February 2011

Suman Das
Affiliation:
Mechanical Engineering Department, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109–2125
Scott J. Hollister
Affiliation:
Biomedical Engineering Department, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109–2125
Colleen Flanagan
Affiliation:
Biomedical Engineering Department, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109–2125
Adebisi Adewunmi
Affiliation:
Mechanical Engineering Department, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109–2125
Karlin Bark
Affiliation:
Mechanical Engineering Department, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109–2125
Cindy Chen
Affiliation:
Mechanical Engineering Department, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109–2125
Krishnan Ramaswamy
Affiliation:
Mechanical Engineering Department, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109–2125
Daniel Rose
Affiliation:
Mechanical Engineering Department, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109–2125
Erwin Widjaja
Affiliation:
Mechanical Engineering Department, University of Michigan, 2350 Hayward St., Ann Arbor, MI 48109–2125
Get access

Abstract

Advanced and novel fabrication methods are needed to build complex three-dimensional scaffolds that incorporate multiple functionally graded biomaterials with a porous internal architecture that will enable the simultaneous growth of multiple tissues, tissue interfaces and blood vessels. The aim of this research is to develop, demonstrate and characterize techniques for fabricating such scaffolds by combining solid freeform fabrication and computational design methods. When fully developed, such techniques are expected to enable the fabrication of tissue engineering scaffolds endowed with functionally graded material composition and porosity exhibiting sharp or smooth gradients. As a first step towards realizing this goal, scaffolds with periodic cellular and biomimetic architectures were designed and fabricated using selective laser sintering in Nylon-6, a biocompatible polymer. Results of bio-compatibility and in vivo implantation studies conducted on these scaffolds are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Langer, R. and Vacanti, J., Science, 260, 920926 (1993).Google Scholar
2. Griffith, L. G. and Naughton, G., Science, 295, 10091014 (2002).Google Scholar
3. Rothen-Weinhold, A. et al., Europ. J. Pharm and Biopharm, 48, 113121 (1999).Google Scholar
4. Stancari, F. et al., Quintessenz (Germany), 51(1), 4752 (2000).Google Scholar
5. Putney, S. D., Pharmaceutical News, 6(2), (1999).Google Scholar
6. Furukawa, T., Matsusue, Y., Yasunaga, T., Shikinami, Y., Okuno, M. and Nakamura, T., Biomaterials, 21, 889898 (2000).Google Scholar
7. Mauli Agarwal, C. and Ray, Robert B., J. Biomed. Mater. Res., 55, 141150 (2001).Google Scholar
8. Griffith, L. G., Acta Materialia, 48, 263277 (2000).Google Scholar
9. Risbud, M.V. and Bhonde, R.R., J. Biomater. Sci. Polymer Edn., 12(1), 125136 (2001).Google Scholar
10. Stamboulis, A.G. et al., Adv. Eng. Mater., 4(3), 105109 (2002).Google Scholar
11. Beaman, J.J. et al, Solid Freeform Fabrication: A New Direction in Manufacturing, Kluwer Academic Publishers, 1997.Google Scholar
12. McIntyre, L.V., Greisler, H., Griffith, L., Johnson, P.C., Mooney, D.J., Mrksich, M., Parenteau, N. and Smith, D., in WTEC Panel Report on Tissue Engineering Research, 2002, pp. 11.Google Scholar
13. Yang, S., Leong, K., Du, Z. and Chua, C., Tissue Engineering, 7, 679689 (2001).Google Scholar
14. Chu, G. T-M. et. al., Mat. Res. Soc. Symp. Proc., 542, 119123.Google Scholar
15. Smay, J. E., Caesarano, J. III and Lewis, J. A., Langmuir, 18, 5429–37 (2002).Google Scholar
16. Giordano, R. A. et al., J. Biomater. Sci. Polym. Ed., 8(1), 6375 (1996).Google Scholar
17. Lee, G., Barlow, J.W., Fox, W.C. and Aufdermorte, T.B., Solid Freeform Fabrication Symp. Proc., 1522 (1996).Google Scholar
18. Taboas, J. M. et al. (in press), Biomaterials.Google Scholar
19. Zein, I.W. et al., Biomaterials, 23(2), 11691185 (2002).Google Scholar
20. Weiss, L., et al., U.S. Patent No. 6,143,293.Google Scholar
21. Hollister, S. J. and Kikuchi, N., Advances in Bioengineering, American Society of Mechanical Engineers, Bioengineering Division (Publication) BED 28, 403404 (1994).Google Scholar
22. Hollister, S.J., Maddox, R.D., and Taboas, J.M., Biomaterials, 23, 40954103 (2002).Google Scholar
23. Yamashita, S., Mochizuki, A., Nakazaki, T., Seita, Y., Sawamoto, J., Endo, F., Yui, N., Ogata, N., Kataoka, K., Okano, T. and Sakurai, Y., ASAIO J., 42, 1019 (1996).Google Scholar
24. Bugmann, P., Taylor, S., Gyger, D., Lironi, A., Genin, B., Vinda, A., La Scala, G., Birraux, J., Le Coultre, C., Burns, 24, 609612 (1998).Google Scholar
25. Naughton, B. A., Preti, R. A. and Naughton, G. K., J. Med., 18, 219 (1987).Google Scholar
26. Catapano, G., Di Lorenzo, M. C., Della Volpe, C., De Bartolo, L. and Migliaresi, D., J. Biomater. Sci. Polymer Edn., 7, 1017 (1996).Google Scholar
27. Gerlach, J., Stoll, P., Schnoy, N. and Bucherl, E. S., Int. J. Artif. Organs, 13, 436 (1990).Google Scholar
28. Doyle, A., Griffiths, J. B. and Newell, D. G. (Eds.), Cell and Tissue Culture: Laboratory Procedures, John Wiley and Sons, New York, 1998.Google Scholar
29. Promega Corporation, Technical Bulletin No. 245.Google Scholar
30. Das, Suman et al, Rapid Prototyping J., 9(2), 4349 (2002).Google Scholar
31. Das, Suman et al (in press), J. Mater. Res (2003).Google Scholar
32. Hollister, Scott J. (private communication).Google Scholar
33. Jacobs, J. J., Roebuck, K.A., Archibeck, M., Hallab, N. J. and T.T., , Clinical Orthopedics and Related Research, 393, 7177, 2001.Google Scholar