Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T09:48:48.605Z Has data issue: false hasContentIssue false

Compositional Characterization of Very Thin SiO2/Si3N4/SiO2 Stacked Films by XPS Using The “Auger Parameter Method”

Published online by Cambridge University Press:  15 February 2011

S. Santucci
Affiliation:
Dipartimento di Fisica UniversitA di L'Aquila, 67010 Coppito (AQ) -, Italy
L. Lozzi
Affiliation:
Dipartimento di Fisica UniversitA di L'Aquila, 67010 Coppito (AQ) -, Italy
M. Passacantando
Affiliation:
Dipartimento di Fisica UniversitA di L'Aquila, 67010 Coppito (AQ) -, Italy
P. Picozzi
Affiliation:
Dipartimento di Fisica UniversitA di L'Aquila, 67010 Coppito (AQ) -, Italy
R. Alfonsetti
Affiliation:
Texas Instruments - Italia - Nucleo Industriale Avezzano, 67051 Avezzano (AQ) -, Italy
F. Fama
Affiliation:
Texas Instruments - Italia - Nucleo Industriale Avezzano, 67051 Avezzano (AQ) -, Italy
G. Moccia
Affiliation:
Texas Instruments - Italia - Nucleo Industriale Avezzano, 67051 Avezzano (AQ) -, Italy
Get access

Abstract

ONO (SiO2/Si3N4/SiO2) structures with thickness less than 10 nm were deposited onto silicon wafers by successive steps using two different method. The effects of the forming time and temperature on the stoichiometry of the single layers and of the whole sandwich have been studied using X-ray Photoelectron Spectroscopy (XPS). This paper demonstrates that the “Auger parameter method” is highly suitable in quantifying the composition of very thin insulating structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weinberg, Z.A., Stein, K.J., Tan, T.N. Nguyen and Sun, J.Y., Appl. Phys. Lett. 57, 1248 (1990)Google Scholar
2. Alfonsetti, R., Tommasis, R. De, Fama', F., Moccia, G., Santucci, S. and Passacantando, M., Advances in X-ray Chemical Analysis, Japan., 26s, 145 (1995).Google Scholar
3. Fukuda, H., Yasuda, M., Iwabuchi, T. and Ohno, S., IEEE Electron Device Lett. 9, L23 (1990).Google Scholar
4. Gonon, N., Gagnaire, A., Barbier, D. and Glachant, A., J.Appl.Phys. 76 (9) 5242 (1994).Google Scholar
5. Banerjee, I. and Kuzminof, D., Appl. Phys.Lett. 62 (13), 1541 (1993).Google Scholar
6. Chao, T.S., Lee, C.L. and Lei, T.F., J.Appl.Phys 73 (4), 1732 (1993).Google Scholar
7. Gonzo, L., Marchetti, F. and Sakar, M., Thin Solid Films 228, 68 (1993).Google Scholar
8. Wagner, C.D., Gale, L.H. and Raymond, R.H., Anal, Chem. 51, 466 (1979).Google Scholar
9. Alfonsetti, R., Lozzi, L., Passacantando, M., Picozzi, P. and Santucci, S., Thin Solid Films 213, 158 (1992).Google Scholar
10. Alfonsetti, R., Lozzi, L., Passacantando, M., Picozzi, P. and Santucci, S., Applied Surf. Sci. 70/71, 222 (1993).Google Scholar
11. Lozzi, L., Passacantando, M., Picozzi, P., Santucci, S., Tomassi, G., Alfonsetti, R. and Borghesi, A., Surf. Interface Anal. 22, 190 (1994).Google Scholar
12. Chao, S.S., Tyler, J.E., Takagi, Y., Pai, P.G., Lucovsky, G., Lin, S.Y., Wong, C.K. and Mantini, M.J., J. Vac. Sci. Technol. A4, 1574 (1986).Google Scholar
13. Handbook of X-ray Photoelectron Spectroscopy, Chastain, J. (ed.) Perkin-Elmer Corporation, Minnesota (1992).Google Scholar
14. Wagner, C.D., Passoja, D.E., Hillery, H.F., Kinisky, T.G., Six, H.A., Jansen, W.T. and Taylor, J.A., J. Vac. Sci. Technol. 21, 933 (1982).Google Scholar
15. Martin, F., Joly, J.P., Sprey, H. and Granneman, E.H.A., Semicond. Sci. Technol. 6, 1100 (1991).Google Scholar