Article contents
Cluster Computations Related to Silicon Thermal Donors
Published online by Cambridge University Press: 28 February 2011
Abstract
Ab-initio quantum chemical computations have been applied to a set of molecular clusters derived from Si5 H12 to model defects in crystalline silicon involving boron, carbon, nitrogen, oxygen, and hydrogen. In computations of defect structure, hydrogen atoms terminating silicon valencies are fixed at their computed positions in Si5H12, to represent forces from the lattice, while the position of other atoms are varied.
We have computed the stable bonding structures of boron, carbon, nitrogen and oxygen atoms to a vacancy, as well as interstitial oxygen, the silicon-oxygen ylid and two oxygen atoms bound to a vacancy. The structures of the dipositive ions of the oxygen bearing clusters have been computed as part of a search for candidates for the core of the 450° C oxygen thermal donor in silicon crystal. The computed cluster energies are employed to give an account of defect thermochemistry; the addition of the free atoms to a vacancy, the addition of interstitial oxygen atoms to a vacancy, the reaction of interstitial oxygen atoms to form a vacancy-oxygen complex with the emission of silicon monoxide, and the reaction of interstitial oxygen with the dipositive ion of substitutional oxygen to form the dipositive ion of two oxygen atoms bound to a vacancy.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1986
References
REFERENCES
- 17
- Cited by