Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T03:07:38.293Z Has data issue: false hasContentIssue false

Chemical Functionalization of Silica Aerogels

Published online by Cambridge University Press:  10 February 2011

Nicola Hüsing
Affiliation:
Institut für Anorganische Chemie der Technischen Universität Wien, Getreidemarkt 9, A-1060 Wien, Austria, [email protected]
Ulrich Schubert
Affiliation:
Institut für Anorganische Chemie der Technischen Universität Wien, Getreidemarkt 9, A-1060 Wien, Austria, [email protected]
Bernhard Riegel
Affiliation:
Institut für Physikalische Chemie der Universität Wtirzburg, Marcusstraße 9–11, D-97070 Wtirzburg, Germany
Wolfgang Kiefer
Affiliation:
Institut für Physikalische Chemie der Universität Wtirzburg, Marcusstraße 9–11, D-97070 Wtirzburg, Germany
Get access

Abstract

Organofunctional silica aerogels were prepared by base catalyzed hydrolysis and condensation of Si(OR')4 / RSi(OMe)3 mixtures, followed by supercritical drying. In the trialkoxysilanes, R is of the type (CH2)nA, the group A being an organic function. Amino, ethylenediamino, mercapto, cyano, vinyl, and methacrylate groups were thus incorporated in the aerogels. The sol-gel reaction of a 4:1 mixture of Si(OMe)4 and (vinyl)Si(OMe)3 was exemplarily monitored by Raman spectroscopy. The Raman spectra show that under basic conditions hydrolysis and condensation of Si(OMe)4 is much faster than that of (vinyl)Si(OMe)3. For the other RSi(OMe)3 precursors the reaction rates strongly depend on the electronic properties and the polarity of the functional organic group. Addition of the aminopropyl and cyanoethyl substituted precursors to Si(OR)4 results in shorter gel times relative to pure Si(OR')4, while the mercaptopropyl, methacryloxypropyl and vinyl substituted precursors retard gelation. Depending on the ratio and the kind of the precursors, 70 - 100 % of the functional organic groups were incorporated into the aerogel network. The hydrophobicity of the aerogels depends on the kind and amount of RSiO1.5 units.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schubert, U., J. Chem. Soc. Dalton (1996), in press.Google Scholar
2. Fricke, J., Aerogels, Springer Proc. Phys. Vol.6, Heidelberg, 1986. H. D. Gesser, P. C. Goswami, Chem. Rev. 89, 765 (1989).Google Scholar
3. Schwertfeger, F., Glaubitt, W., Schubert, U., J. Non-Cryst. Solids 145, 85 (1992). U. Schubert, F. Schwertfeger, N. Hüising, E. Seyfried, Mat. Res. Soc. Symp. Proc. 346, 151 (1994). N. Hoising, F. Schwertfeger, W. Tappert, U. Schubert, J. Non-Cryst. Solids 186, 1 (1995).Google Scholar
4. Schwertfeger, F., Hüsing, N., Schubert, U., J. Sol-Gel Sci. Technol. 2, 103 (1994). N. Hüsing, U. Schubert, J. Sol-Gel Sci. Technol. (1996), in press.Google Scholar
5. Cao, W., Hunt, A., Mat. Res. Soc. Symp. Proc. 346, 631 (1994).Google Scholar
6. Loy, D. A., Shea, K. J., Chem. Rev. 95, 1431 (1995). D. A. Loy, G. M. Jamison, B. M. Baugher, E. M. Russick, R. A. Assink, S. Prakabar, K. J. Shea, J. Non-Cryst. Solids 186,44 (1995).Google Scholar
7. Schubert, U., Hüsing, N., Lorenz, A., Chem. Mater. 7, 2010 (1995).Google Scholar
8. Saville, B., Analyst, 86, 29, (1961).Google Scholar
9. Byrne, R. E., Anal. Chem. 28, 126, (1956). J. B. Johnson, Z. Anal. Chem. 154, 58 (1957).Google Scholar
10. Osterholtz, F. D., Pohl, E.R., J. Adhesion Sci. Technol. 6 (1), 127 (1992).Google Scholar