Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T04:00:35.307Z Has data issue: false hasContentIssue false

Charge carrier dynamics in small-molecule- and polymer-based donor-acceptor blends

Published online by Cambridge University Press:  30 December 2014

Keshab Paudel
Affiliation:
Oregon State University, Corvallis, OR, United States.
Brian Johnson
Affiliation:
Oregon State University, Corvallis, OR, United States.
Mattson Thieme
Affiliation:
Oregon State University, Corvallis, OR, United States.
John E. Anthony
Affiliation:
University of Kentucky, Lexington, KY, United States.
Oksana Ostroverkhova
Affiliation:
Oregon State University, Corvallis, OR, United States.
Get access

Abstract

We present a comparative study of optical absorption, photoluminescence (PL), and photoconductivity in bulk heterojunctions comprising a high performance functionalized anthradithiophene (ADT) derivative or the benchmark polymer P3HT as donor and functionalized pentacene (Pn) derivative or PCBM as acceptor. Of all D/A blends studied, the ADT/PCBM blend exhibited the highest charge photogeneration efficiencies under 532 nm excitation, leading to the highest amplitudes of time-resolved and continuous wave (cw) photocurrents. At nanosecond time scales after photoexcitation, both ADT-TES-F-based blends and the P3HT/Pn-TIPS-F8 blend exhibited photocurrents which were higher by a factor of 2-10, depending on the blend, than that in the P3HT/PCBM blend. However, cw photocurrents showed a different trend, with the ADT-TES-F/PCBM blend exhibiting only a factor of ∼2.5 higher photoresponse than that in the P3HT/PCBM blends, and the ADT-TES-F- and P3HT- based blends with Pn-TIPS-F8 showing a factor of ∼1.5-2.5 lower photoresponse than that in the P3HT/PCBM blend, due to other contributions, such as that of charge trap-limited transport, to cw photoresponse.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Scharber, M.C. and Sariciftci, N.S., Prog. Polym. Sci. 38, 1929 (2013).CrossRefGoogle Scholar
Liu, Y., Chen, C.-C., Hong, Z., Gao, J., Yang, Y.M., Zhou, H., Dou, L., Li, G., and Yang, Y., Sci. Rep. 3, 3356 (2013).CrossRefGoogle Scholar
Sharenko, A., Gehrig, D., Laquai, F., and Nguyen, T.-Q., Chem. Mater. 26, 4109 (2014).CrossRefGoogle Scholar
Anthony, J.E., Chem. Mater. 23, 583 (2011).CrossRefGoogle Scholar
Gundlach, D.J., Royer, J.E., Park, S.K., Subramanian, S., Jurchescu, O.D., Hamadani, B.H., a Moad, J., Kline, R.J., Teague, L.C., Kirillov, O., Richter, C. A., Kushmerick, J.G., Richter, L.J., Parkin, S.R., Jackson, T.N., and Anthony, J.E., Nat. Mater. 7, 216 (2008).CrossRefGoogle Scholar
Park, S.K., Mourey, D. A., Subramanian, S., Anthony, J.E., and Jackson, T.N., Appl. Phys. Lett. 93, 043301 (2008).CrossRefGoogle Scholar
Platt, A., Day, J., Subramanian, S., Anthony, J., and Ostroverkhova, O., J. Phys. Chem. C 113, 14006 (2009).CrossRefGoogle Scholar
Platt, A., Kendrick, M., Loth, M., Anthony, J., and Ostroverkhova, O., Phys. Rev. B 84, 235209 (2011).CrossRefGoogle Scholar
Paudel, K., Johnson, B., Neunzert, A., Thieme, M., Purushothaman, B., Payne, M.M., and Anthony, J.E., J. Phys. Chem. C 117, 24752 (2013).CrossRefGoogle Scholar
Paudel, K., Johnson, B., Thieme, M., Haley, M.M., Payne, M.M., Anthony, J.E., and Ostroverkhova, O., Appl. Phys. Lett. 105, 043301 (2014).CrossRefGoogle Scholar
Kim, Y., Cook, S., Tuladhar, S.M., Choulis, S. a., Nelson, J., Durrant, J.R., Bradley, D.D.C., Giles, M., McCulloch, I., Ha, C.-S., and Ree, M., Nat. Mater. 5, 197 (2006).CrossRefGoogle Scholar
Kendrick, M.J., Neunzert, a., Payne, M.M., Purushothaman, B., Rose, B.D., Anthony, J.E., Haley, M.M., and Ostroverkhova, O., J. Phys. Chem. C 116, 18108 (2012).CrossRefGoogle Scholar
Day, J., Platt, A.D., Ostroverkhova, O., Subramanian, S., Anthony, J.E., Appl. Phys. Lett. 94, 013306 (2009).CrossRefGoogle Scholar
Shepherd, W.E.B., Platt, A.D., Kendrick, M.J., Loth, M. A., Anthony, J.E., and Ostroverkhova, O., J. Phys. Chem. Lett. 2, 362 (2011).CrossRefGoogle Scholar
Johnson, B., Kendrick, M.J., and Ostroverkhova, O., J. Appl. Phys. 114, 094508 (2013).CrossRefGoogle Scholar
Day, J., Platt, A. D., Subramanian, S., Anthony, J.E., and Ostroverkhova, O., J. Appl. Phys. 105, 103703 (2009).CrossRefGoogle Scholar
Kendrick, M.J., Neunzert, A., Payne, M.M., Purushothaman, B., Rose, B.D., Anthony, J.E., Haley, M.M., and Ostroverkhova, O., J. Phys. Chem. C 116, 18108 (2012).CrossRefGoogle Scholar