Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T19:46:29.481Z Has data issue: false hasContentIssue false

Characterizations of enriched metallic single-walled carbon nanotubes in polymer composite

Published online by Cambridge University Press:  01 February 2011

Bin Chen
Affiliation:
NASA Ames Research Center, MS 245–3, Moffett Field, CA 94035 Email: [email protected]
Jing Li
Affiliation:
NASA Ames Research Center, MS 245–3, Moffett Field, CA 94035 Email: [email protected]
Yijiang Lu
Affiliation:
NASA Ames Research Center, MS 245–3, Moffett Field, CA 94035 Email: [email protected]
Martin Cinke
Affiliation:
NASA Ames Research Center, MS 245–3, Moffett Field, CA 94035 Email: [email protected]
Dyng Au
Affiliation:
NASA Ames Research Center, MS 245–3, Moffett Field, CA 94035 Email: [email protected]
Julie P. Harmon
Affiliation:
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Fl 33620 Email: [email protected]
Patrici Anne O. Muisener
Affiliation:
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Fl 33620 Email: [email protected]
LaNetra Clayton
Affiliation:
Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Fl 33620 Email: [email protected]
Get access

Abstract

We characterize the electric properties of single-walled carbon nanotube (SWNT) dispersed in the polymethyl methacrylate (PMMA) composites. In the melt-blended sample, the SWNTs – originally semiconducting – became predominantly metallic. The interaction of the PMMA and SWNT is investigated by the polarized Raman studies. The structure changes in the PMMA and SWNT shows that the anisotropic interactions play important role in SWNT electronic density of states (DOS) changes. The increased metallic SWNT percentage is confirmed by the conductivity and dielectric constant measurements of composite and neat PMMA.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Krupke, R., Hennrich, F., Löhneysen, H. v., Kappes, M. M., Science, Vol. 301, 344 (2003).Google Scholar
2 Chung, D. D. L., Carbon, Vol. 39, 279 (2001).Google Scholar
3 Chen, B., Cinke, M., Li, J. and Meyyappan, M., Chi, Z., Harmon, J. P., Muisener, P. A. O., Clayton, L., D'Angelo, J., submitted to adv. Func. Mster.Google Scholar
4 Liu, J., Rinzler, A.G., Dai, H., Hafner, J. H., Bradley, R.K., Boul, P.J., Lu, A., Inverson, T, Shelimove, K., Huffman, C.B., Rodriguez-Macias, F., Shon, Y-S., Lee, T.R., Colbert, D.T. and Smalley, R. E., Science 280, 1253 (1998).Google Scholar
5 Chen, B., Parker, G. II, Han, J., Meyyappan, M., and Cassell, A. M., Chem. Mater., Vol. 12, 1891 (2002).Google Scholar
6 Dybal, J. and Krimm, S., Macromolecules, Vol. 23, 1301 (1990).Google Scholar
7 Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., Fang, S., Subbaswamy, K. R., Menon, M., Thess, A., Smalley, R. E., Dresselhaus, G. and Dresselhaus, M. S., Science, 275, 187 (1997).Google Scholar
8 Wei, C., Srivastava, D. and Cho, K., Nano Lett., 2, 647 (2002).Google Scholar
9 Maniwa, Y., Fujiwara, R., Kira, H., Tou, H., Kataura, H., Suzuki, S., Achiba, Y., Nishibori, E., Takata, M., Sakata, M., Fujiwara, A., and Suematsu, H., Phys. Rev. B., 64, 241402 (R) (2001).Google Scholar
10 Polymer Handbook, 4th edition, Brandrup, , Immergut, Edmund H., and Grulke, Eric A., eds., John Wiley & Sons (2003).Google Scholar
11 Yang, L., Han, J., Phys. Rev. Lett., 85, 154 (2000).Google Scholar