Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-08T08:16:49.728Z Has data issue: false hasContentIssue false

Calculation of the Energy Spectrum of NANÖ-Meter-Sized Silicon

Published online by Cambridge University Press:  28 February 2011

Vladimir Gavrilenko
Affiliation:
Technical University of Munich, Physics Department E16, W-8046 Garching, Germany
Peter Vogl
Affiliation:
W. Schottky Institute, Technical University of Munich, W-8046 Garching, Germany
Frederick Koch
Affiliation:
Technical University of Munich, Physics Department E16, W-8046 Garching, Germany
Get access

Abstract

A large number of experiments on porous silicon has reliably demonstrated that the onset of optical absorption is shifted to energies significantly above the band edge of bulk Si. This increased transparency of the small nanometer-sized crystallites with their H-covered surfaces is a fact that asks for theoretical interpretation. Handwaving arguments about quantum size effect can only be a qualitative guide.

We present here a tight binding calculation of a Si slab with nanometer dimensions covered with hydrogen. This is a model system for one-dimensional confinement. We consider the effect on the electron energy structure, the total and local densities of states of Si covered with hydrogen in two phases: monohydride - Si : H (2×1) symmetric dimer, and dihydride phases - Si : Hi (1×1) A total energy minimization method in the framework of the self-consistent tight binding theory has been used to investigate the structural reconstruction of the Si -surface after the adsorption of hydrogen. We find, that the band gap of the slab covered with H on both sides (monohydride phase) shifts to higher energies (typically ∼1.8 eV for 1.16 nm thick slab). The adsorption of hydrogen removes all the electronic states from the gap for both phases investigated. In nanometer sized slabs the lowest electronic states in the conduction band are localized on the surface Si—atoms, in contrast to thicker slabs. We discuss the implication of this model calculation to light emission in porous Si.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L.T.. Appl. Phys. Lett., 57, 1046 (1990).Google Scholar
2. Vial, J.C., Bsiesy, A., Gaspard, F., Herino, R., Ligeon, M., Muller, F., Romestain, R., Macfarlane, R.M.. Phys. Rev., B, 45, 14171 (1992).Google Scholar
3. Lehmann, V., Gosele, U.. Appl. Phys. Lett., 58 (1991).Google Scholar
4. Prokes, S.M., Glembocki, O.J., Bermudes, V.M., Kaplan, R., Friedersdorf, L.E., Searson, P.C.. Phys. Rev., B, 45, 13788 (1992).Google Scholar
5. Petrova-Koch, V., Muschik, T., Gavrilenko, V., Koch, F., Proceedings of the 21th International Conference on the Physics of Semiconductors, Beijing, China, August 10–14, 1992, (to be published).Google Scholar
6. Brandt, M.S., Fuchs, H.D., Stutzmann, M., Weber, J., Cardona, M.. Solid State Commun., 81, 307 (1992).Google Scholar
7. Tischler, M.A., Collins, R.T., Solid State Commun., (to be published).Google Scholar
8. Selloni, A., Ancilotto, F., Takeuchi, N., Vittadini, A. (unpublished).Google Scholar
9. Pandey, K.C.. Phys. Rev., B, 14, 1557 (1976).Google Scholar
10. Ciraci, S., Butz, R., Oellig, E.M., Wagner, H.. Phys. Rev., B, 30, 711 (1984).Google Scholar
11. Sanders, G.D., Chang, Yia-Chung. Phys. Rev., B, 45, 9202, (1992).Google Scholar
12. Ren, S.Y., Dow, J.D.. Phys. Rev., B, 45, 6492 (1992).Google Scholar
13. Hybertsen, M.S., Proc. Mat. Res. Soc. Symp. 256, 179 (1992).Google Scholar
14. Min, B.J., Lee, Y.H., Wang, C.Z., Chan, C.T., Ho, K.M.. Phys. Rev., B, 45, 6839 (1992).Google Scholar
15. Vinchon, T., Spanjaard, D., Desjonqueres, M.C.. J. Phys. C. 4, 5061(1992)Google Scholar
16. Gavrilenko, V.I.. Physica Status Solidi (b), 139, 457(1987)Google Scholar
17. Pollmann, J.. Festkörperprobleme. 20, 117 (1980).Google Scholar
18. Chadi, J.. J. Vac. Sci. Technol. 16, 1290 (1979).Google Scholar
19. Majewski, J.A., Vogl, P.. Phys. Rev., B, 35, 9666(1987)Google Scholar
20. Hoffman, R., J. Chem. Phys. 39, 1397 (1963).Google Scholar
21. Cunningham, S.L.. Phys. Rev. B, 10, 4988(1974).Google Scholar
22. Vogl, P., Hjalmarson, H.P., Dow, J.D.. J. Phys. Chem. Solids 44, 365(1983).Google Scholar
23. Petrova-Koch, V., Nikolov, A., (unpublished).Google Scholar