Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-10-07T08:17:13.904Z Has data issue: false hasContentIssue false

Brazing Under Microgravity in a Resistance Heated Furnace

Published online by Cambridge University Press:  15 February 2011

Frieler Key
Affiliation:
University of Vienna, 1090 Wien, Austria
Stickler Roland
Affiliation:
University of Vienna, 1090 Wien, Austria
Siegfried Eberhard
Affiliation:
Bundesanstalt für Materialprüfung, Berlin, FRG
Get access

Abstract

Vacuum brazing under 1-g and microgravity (carried out on TEXUS II in preparation of an experiment for FSLP) conditions revealed the effect of various parameters (e.g. thermal history, hydrostatic pressure, buoyancy forces) on the microstructure of the joint and the gap filling phenomena.

The following results will be presented:

(a) Design of brazing specimens

(b) Variations of microstructure depending on gap width, gravity, and thermal history

(c) Flow patterns of molten braze as revealed by radioactive tracer experiments

(d) Evaluation of Plateau-type simulation experiments

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE

(1)Bathke, W., Philippovich, N., Stickler, R. and Frieler, K., Shuttle/Spacelab Utilization, Final Report Project TEXUS-II, DFVLR, 1978, p. 62Google Scholar
(2)Tobin, M. and Kossowsky, R., Research Study on Materials Processing in Space Expt. Nr. M512, Final Report on M 551, M 552 and M 553, 1973, NASA CR-120479.Google Scholar
(3)Bourgeois, S., Convection Effects on Skylab Experiments M 551, M 552 and M 553, Phase C Report, NASA CR.120482, 1973.Google Scholar
(4)Heine, R.W., Adams, C.M., Siewert, T.A., Flight/Ground Sample Comparison Relating to Flight Experiment M 552, Exothermic Brazing, NASA CR–120509, 1973.Google Scholar
(5)Pattee, H.E. and Monroe, R.W., Characterization of Exothermic Brazing Components, Skylab Experiment M 552, NASA CR–120518, 1973.Google Scholar
(6)Braski, D.N., Adair, H.L. and Kobisk, E.H., Radioisotope Tracer Studies in the NASA Skylab Exothermic Brazing Experiment M 552, NASA CR–129035, 1974.Google Scholar
(7)Muraki, R. and Masubichi, K., Discipline Report on Thermal Analysis of N 551, M 552 and M 553 Experiments, NASA CR–120513, 1974.Google Scholar
(8)Larson, D.J jr., Metallurgical Analysis of Skylab M 552 and M 558 Samples Final Report, Grumman Research Dept., Report RE–565, 1978.Google Scholar
(9)Sievert, T.A. and Heine, R.W., Recent Look at Ag-Cu-Ni System, Met. Trans., A, vol 8A, No. 3, 515518, 1976.Google Scholar
(10) Gmelins Handbuch der Anorganischen Chemie, 8th Ed., p. 365, 1972.Google Scholar
(11)Ishi, Y., Ouzana, R. and Yamamoto, N., The Dynamic Observations of the Brazing Hydromechanics by x-ray Fluoroscopy (16 mm film), Ed. Harman, H., Japan.Google Scholar
(12)Philippovich, N. and Frieler, K., unpublished results.Google Scholar
(13)Siegfried, E. and Frieler, K., Status Seminar 1981 des BMFT, DGLR-Bericht, in print.Google Scholar
(14)Plateau, J., Statiq. expl. et theor. des liquides, 1873.Google Scholar
(15)Handbook of Chemistry and Physics, 50th Ed, The Chemical Rubber Co., Cleveland, Ohio, 44 128.Google Scholar
(16)J. Timmerman's Physico-Chemical Constants of Pure Organic Compounds, Elsevier Publ.Comp.Inc., N.Y., Amsterdam, London Brussels, Vol. 1, 1950,208.Google Scholar
(17)Bricard, A., Eustathopulos, N., Joud, J.C. and Desrb, P., Acad.Sc., C.R. Paris, t. 276, 1973.Google Scholar
(18)Adamson, A.W., Physical Chemistry of Surfaces, Interscience Publishers, Inc., N.Y., 1960.Google Scholar