Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:35:54.905Z Has data issue: false hasContentIssue false

Au-assisted Growth of Indium Antimonide Nanowires by Chemical Vapor Deposition: Temperature and Growth Duration Effects

Published online by Cambridge University Press:  22 August 2011

Jiebin Zhong
Affiliation:
Department of Mechanical Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, USA
Jian Lin
Affiliation:
Department of Mechanical Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, USA
Miroslav Penchev
Affiliation:
Department of Electrical Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, USA
Mihrimah Ozkan
Affiliation:
Department of Electrical Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, USA
Cengiz S. Ozkan
Affiliation:
Department of Mechanical Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, USA
Get access

Abstract

In this paper, we investigate the morphology variation of Au-assisted epitaxial InSb nanowires (NWs) dependence on growth temperature and growth duration by chemical vapor deposition (CVD). The NW length and tapering factor correlated to the NW morphology are determined as a function of growth temperature (300°C-480°C). Higher density and longer NWs were observed on the substrate as proportional to the growth duration. The growth direction of the NWs is <110> by Transmission Electron Microscopy (TEM) studies. The aim of this study is to gain better understanding of the III-V NWs growth mechanism and achieve control over the growth of InSb NWs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cui, Y. and Lieber, C. M., Science 291 (5505), 851853 (2001).Google Scholar
2. Wang, X. and Ozkan, C. S., Nano Lett. 8 (2), 398404 (2008).Google Scholar
3. Novotny, C. J., Yu, E. T. and Yu, P. K. L., Nano Lett. 8(3), 775779 (2008).Google Scholar
4. Zhang, G. Q., Tateno, K., Gotoh, H. and Nakano, H., Nanotechnology 21(9) (2010).Google Scholar
5. Brus, L., J.Phys Chem. 98(14), 35753581 (1994).Google Scholar
6. Mozos, J. L., Machado, E., Hernandez, E. and Ordejon, P., International Journal of Nanotechnology 2(1-2), 114128 (2005).Google Scholar
7. Ashley, T. and Gordon, N. T., Quantum Sensing and Nanophotonic Devices 5359, 89100 (2004).Google Scholar
8. Hongzhi, C., Xuhui, S., Lai, K. W. C., Meyyappan, M. and Ning, X., 2009 IEEE Nanotechnology Materials and Devices Conference (NMDC), 212216 |xxvi+254 (2009).Google Scholar
9. Heremans, J., Partin, D. L., Thrush, C. M. and Green, L., Semicond. Sci. Technol. 8(1), S424S430 (1993).Google Scholar
10. Ercolani, D., Rossi, F., Li, A., Roddaro, S., Grillo, V., Salviati, G., Beltram, F. and Sorba, L., Nanotechnology 20(50) (2009).Google Scholar
11. Park, H. D., Prokes, S. M., Twigg, M. E., Ding, Y. and Wang, Z. L., J. Cryst. Growth 304 (2), 399401 (2007).Google Scholar
12. Caroff, P., Messing, M. E., Borg, B. M., Dick, K. A., Deppert, K. and Wernersson, L. E., Nanotechnology 20 (49), - (2009).Google Scholar
13. Vogel, A. T., de Boor, J., Becker, M., Wittemann, J. V., Mensah, S. L., Werner, P. and Schmidt, V., Nanotechnology 22 (1) (2011).Google Scholar
14. Mohammad, S. N., J. Chem. Phys. 131 (22) (2009).Google Scholar
15. Yang, X. Y., Wang, G. M., Slattery, P., Zhang, J. Z. and Li, Y., Cryst. Growth Des. 10(6), 24792482 (2010).Google Scholar
16. Dubrovskii, V. G., Sibirev, N. V., Cirlin, G. E., Soshnikov, I. P., Chen, W. H., Larde, R., Cadel, E., Pareige, P., Xu, T., Grandidier, B., Nys, J. P., Stievenard, D., Moewe, M., Chuang, L. C. and Chang-Hasnain, C., Physical Review B 79 (20) (2009).Google Scholar
17. Dubrovskii, V. G., Sibirev, N. V., Cirlin, G. E., Harmand, J. C. and Ustinov, V. M., Physical Review E 73 (2) (2006).Google Scholar
18. Dayeh, S. A., Yu, E. T. and Wang, D., Nano Lett. 7 (8), 24862490 (2007).Google Scholar
19. Dick, K. A., Caroff, P., Bolinsson, J., Messing, M. E., Johansson, J., Deppert, K., Wallenberg, L. R. and Samuelson, L., Semicond. Sci. Technol. 25 (2) (2010).Google Scholar
20. Lensch-Falk, J. L., Hemesath, E. R., Perea, D. E. and Lauhon, L. J., J. Mater. Chem. 19 (7), 849857 (2009).Google Scholar
21. Dick, K. A., Deppert, K., Karlsson, L. S., Wallenberg, L. R., Samuelson, L. and Seifert, W., Adv. Funct. Mater. 15 (10), 16031610 (2005).Google Scholar
22. Gao, L., Woo, R. L., Liang, B., Pozuelo, M., Prikhodko, S., Jackson, M., Goel, N., Hudait, M. K., Huffaker, D. L., Goorsky, M. S., Kodambaka, S. and Hicks, R. F., Nano Lett. 9 (6), 22232228 (2009).Google Scholar
23. Irrera, A., Pecora, E. F. and Priolo, F., Nanotechnology 20(13) (2009).Google Scholar