Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:21:32.467Z Has data issue: false hasContentIssue false

Atomic Displacement Parameters: A Useful Tool in the Search for New Thermoelectric Materials?

Published online by Cambridge University Press:  10 February 2011

B. C. Sales
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
B. C. Chakoumakos
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
D. Mandrus
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
J. W. Sharp
Affiliation:
Research and Development Division, Marlow Industries, Dallas, Texas 75238
N. R. Dilley
Affiliation:
Department of Physics, University of California San Diego 92093
M. B. Maple
Affiliation:
Department of Physics, University of California San Diego 92093
Get access

Abstract

The atomic displacement parameters (ADPs) measure the mean-square displacement amplitude of an atom about its equilibrium position in a crystal. It is demonstrated that the ADPs can be used to identify crystalline solids with unusually low lattice thermal conductivties. A low lattice thermal conductivity is essential in the design of thermoelectric materials with improved efficiencies.The atomic displacement parameters (ADPs) have been measured using powder neutron diffraction as a function of temperature for several clathrate-like compounds (RxCo4-yFeySb12, where R= La, Ce, Yb or TI, x=0.22, 0.8, 1, y=0, 1;Tl2SnTe5 and Tl2GeTe5). The ADP data show that in each of the compounds one of the atoms is weakly bound and “rattles” within its atomic cage. This atomic “rattling” severely reduces the ability of these crystals to conduct heat and in some cases the lattice thermal conductivity approaches the theoretical minimum value. In many clathrate-like compounds, the ADP can also be used to estimate the Einstein frequency of the “rattler”, and to predict the existence of localized vibrational modes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kuhs, W. F., Acta Cryst. A48, 80 (1992).Google Scholar
2. Dunitz, J.D., Schomaker, V., and Trueblood, K. N., J. Phys. Chem. 92, 856 (1988).Google Scholar
3. Kittel, C., Introduction to Solid State Physics, Third Edition (John Wiley and Sons, New York 1968), pp. 69–70.Google Scholar
4. Willis, B. T. M. and Pryor, A. W., Thermal Vibrations in Crystallography (Cambridge University Press, London 1975)Google Scholar
5. Mahan, G. D., Sales, B. C. and Sharp, J. W., Physics Today, 50, No. 3, 42 (1997).CrossRefGoogle Scholar
6. Slack, G. A. in CRC Handbook of Thermoelectrics, edited by Rowe, D. M. (Chemical Rubber, Boca Ratan, FL, 1997) pp. 407–440.Google Scholar
7. Goldsmid, H. J., Electronic Refrigeration (Pion Limited, London 1986).Google Scholar
8. Sales, B. C., MRS Bulletin 23, 15 (1998).Google Scholar
9. Sharp, J. W., Sales, B. C., Chakoumakos, B. C. and Mandrus, D., to appear in Appl. Phys. Lett. Google Scholar
10. Morelli, D. T. and Meisner, G. P., J. Appl. Phys. 77, 3777 (1995).CrossRefGoogle Scholar
11. Sales, B. C., Mandrus, D., and Williams, R. K., Science 272, 1325 (1996).CrossRefGoogle Scholar
12. Fleurial, J. -P., Borshchevsky, A., Caillat, T., Morelli, D. T., and Meisner, G. P., in Proceedings of the Fifteenth Conference on Thermoelectrics, Pasadena CA (IEEE Piscataway, NJ, 1996) p. 91.Google Scholar
13. Nolas, G. S., Slack, G. A., Morelli, D. T., Tritt, T. M., Ehrlich, A. C., J. Appl. Phys. 79, 4002 (1996).CrossRefGoogle Scholar
14. Sales, B. C., Mandrus, D., Chakoumakos, B. C., Keppens, V. and Thompson, J. R., Phys. Rev. B. 56, 15081.CrossRefGoogle Scholar
15. Chen, B., Xu, J. X., Uher, C., Morelli, D. T., Meisner, G. P., Fleurial, J. P., Caillat, T., and Borshchevshy, A., Phys. Rev. B 55, 1476 (1997).Google Scholar
16. Chakoumakos, B. C., Sales, B. C., Mandrus, D. and Keppens, V., Acta. Cryst. in pressGoogle Scholar
17. Dilley, N. R., Freeman, E. J., Bauer, E. D., and Maple, M. B., Phys. Rev. B. 58, 6287 (1998).CrossRefGoogle Scholar
18. Braun, D. J. and Jeitschko, W., J. Less Common Metals 72, 147 (1988).Google Scholar
19. Agafonov, V., Legendre, B., Rodier, N., Cense, J. M., Dichi, E., and Kra, G., Acta. Cryst. C47. 850 (1991).Google Scholar
20. Slack, G. A., Solid State Physics, Vol.34 edited by Ehrenreich, H., Seitz, F. and Turnbull, D. (Academic Press Inc., New York, 1979) pp. 1–73.Google Scholar
21. Cahill, D. G., Watson, S. K., and Pohl, R. O., Phys. Rev. B 46, 6131 (1992).CrossRefGoogle Scholar
22. Keppens, V., Mandrus, D., Sales, B. C., Chakoumakos, B. C., Dai, P., Coldea, R., Maple, M. B., Gajewski, D. A., Freeman, E. J., and Bennington, S., Nature 395, (1998).Google Scholar
23. Nolas, G. S., Cohn, J. L., Slack, G. A., and Schujman, S. B., Appl. Phys. Lett. 73, 178 (1998).CrossRefGoogle Scholar
24. Eisenmann, B., Schafer, H., and Zagler, R. J. Less. Common Metals 118, 43 (1986).Google Scholar
25. Zakrzewski, M. and White, M. A., Phys. Rev. B 45 2809 (1992),Google Scholar
26. Michalski, D. and White, M. A., J. Chem. Phys. 106, 6202 (1997).Google Scholar
27. Nolas, G. S., Cohn, J. L., Slack, G. A., Phys. Rev. B. 58, 164 (1998).CrossRefGoogle Scholar
28. Morelli, D. T., Meisner, G. P., Chen, B., Hu, S., and Uher, Citrad, Phys. Rev. B. 56, 7376 (1997).CrossRefGoogle Scholar
29. Grannan, E. R., Randeria, M. and Sethna, J. P., Phys. Rev. Lett. 60, 1402 (1988).CrossRefGoogle Scholar
30. Meisner, G. P., Morelli, D. T., Hu, S., Jong, J., and Uher, C., Phys. Rev. Lett. 80, 3551 (1998).CrossRefGoogle Scholar
31. Sales, B. C., unpublished data.Google Scholar