Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-20T05:14:01.691Z Has data issue: false hasContentIssue false

Application of Ion-Plasma-Electron Technological Source T A M E K for Modification of Materials

Published online by Cambridge University Press:  22 February 2011

Alexander M. Tolopa*
Affiliation:
Applied Physics Institute, P.O.Box 561, Sumy, 244024, Ukraine. Pan TAMEK, 13 Partizansky prospect, Vladivostok, 690002, Russia. TAMEK High Tech. Inc., 1111 Third Avenue, Suite 3400, Seattle, WA, 98101, USA.
Get access

Abstract

The same vacuum arc TAMEK source in pulse mode can generate a wide aperture S=300...2000 cm^2 ion flow of any hard electroconductive materials (metal or composites type -Tic, TiSiC, NiCrAlY, MoS, TiMoSi, WA1B, TІBNІ) both for ion implantation (Ei<200 keV, dDi=10^16 ion/cm^2/min) and for deposition dh=50...200 nm/min of the same ions. TAMEK design principle is to provide realization of ion implantation, deposition, mixing or ion beam assisted deposition of the same ions without switching off the source. TAMEK is able to create a mutual mixed (10×90 at.%) alloyed layer up to 3 μm for time in t=15 min, with structure improving (microhardness) of inner layer up to 50 μm in depth. This report presents a review of application of TAMEK source for improving the properties of surface layers of tools, construction materials, electrical contacts and electrodes, glass and other dielectric materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Tolopa, A.M., Elaboration of Plasma Emitters, Scientific Report Tomsk Institute of Automatic Control Systems, No 01840023160, Moscow, VNTIC, 1984, p.57.Google Scholar
2 Aksenov, A.I., Pankovets, N.G. and Tolopa, A.M., Prib. Tekn. Eksp., 3, 139(1987).Google Scholar
3 Aksenov, A.I., Bugaev, S.P. and Tolopa, A.M., Prib. Tekh. Eksp., 4, 133(1988).Google Scholar
4 Aksenov, A.I., Anuchin, M.N. and Tolopa, A.M., Prib. Tekh. Eksp., 5, 134(1988).Google Scholar
5 Aksenov, A.I., Pankovets, N.G. and Tolopa, A.M., Phys. Chem. Mater. Treatment, 4, 9(1989).Google Scholar
6 Brown, I.G., IEEE Trans. Nucl. Sci., NS–22, 1723(1985).Google Scholar
7 Brown, I.G., Dichinsol, M.D., Jalvin, J.E. and et al. , J. Mater. Eng., 13, 217(1991).Google Scholar
8 Brown, I.G., Fenberg, B. and Jalvin, J.E., J. Appl. Phys., 63, 4889(1988).Google Scholar
9 Pogrebnjak, A.D. and Tolopa, A.M., Nucl.Instr. and Methods., B52, 25(1990).Google Scholar
10 Meissner, J., Nucl.Instrum. and Methods., B19/20, 682(1987).Google Scholar
11 Aksenov, A.I., Puchkareva, L.N. and Tolopa, A.M., Zurn. Tekh. Phys. 61 (3),158(1991).Google Scholar