Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T00:42:32.693Z Has data issue: false hasContentIssue false

Analysis and Calibration of the Flow Characteristics of A Pressure Controlled Vapor Source For Gas Source Doping: CdTe:l

Published online by Cambridge University Press:  16 February 2011

D. Rajavel
Affiliation:
Physical Sciences Laboratory, Georgia Tech Research Institute, Atlanta, Georgia, 30322.
B. K. Wagner
Affiliation:
Physical Sciences Laboratory, Georgia Tech Research Institute, Atlanta, Georgia, 30322.
K. Maruyama
Affiliation:
Visiting Scientist, Fujitsu, Japan
R. G. Benz
Affiliation:
Physical Sciences Laboratory, Georgia Tech Research Institute, Atlanta, Georgia, 30322.
A. Conte
Affiliation:
Physical Sciences Laboratory, Georgia Tech Research Institute, Atlanta, Georgia, 30322.
C. J. Summers
Affiliation:
Physical Sciences Laboratory, Georgia Tech Research Institute, Atlanta, Georgia, 30322.
Get access

Abstract

A pressure controlled vapor source was developed for the gas source doping of (Hg,Cd)Te alloys. The dopant source has been subjected to extensive tests, and the flow characteristics determined. The dopant source was used to control the flow rates of ethyliodide for the n-type doping of CdTe. Highly conductive CdTe:l films were grown by molecular beam epitaxy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wagner, B.K., Benz, R.G. and Summers, C.J., J. Vac. Sci. Technol. A 7, 295 (1989).Google Scholar
2. O'Hanlon, J.F., A Users Guide to Vacuum Technology, (John Wiley and Sons, New York, 1980) p. 20.Google Scholar
3. Santeler, D.J., J. Vac. Sci. Technol. A 4, 348 (1986).CrossRefGoogle Scholar
4. Arias, J.M., Shin, S.H., Cooper, D.E., Zandian, M., Pasko, J.G., Gertner, E.R. and DeWames, R.E., J. Vac. Sci. Technol. A 8, 1025 (1990).Google Scholar
5. Marfaing, Y., Prog. Crystal Growth Charact. Vol.4, 317 (1981).Google Scholar
6. Bicknell-Tassius, R.N., Waag, A.. Wu, Y.S., Kuhn, T.A. and Ossau, W., J. Crystal Growth 101, 33 (1990).Google Scholar
7. Hwang, S., Harper, R.L., Harris, K.A., Giles, N.C., Bicknell, R.N., Cook, J.W. and Schetzina, J.F., J. Vac. Sci. Technol. A 6, 2821 (1988).CrossRefGoogle Scholar
8. Taskar, N.R., Natarajan, V., Bhat, I.B. and Gandhi, S.K., J. Crystal Growth, 86, 228 (1988).Google Scholar
9. Rajavel, D., Mueller, F., Benson, J.D., Wagner, B. K, Benz, R.G. and Summers, C.J., J. Vac. Sci. Technol. A, 1002 (1990).Google Scholar
10. Benson, J.D., Wagner, B.K., Torabi, A. and Summers, C.J., Appl. Phys. Lett. 49, 1034 (1986).Google Scholar