Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T16:49:51.906Z Has data issue: false hasContentIssue false

An Atomistic Study of Surface Vacancy Diffusion

Published online by Cambridge University Press:  21 February 2011

L. Zhao
Affiliation:
University of Michigan, Applied Physics Program, Ann Arbor, MI 48109
R. Najafabadi
Affiliation:
University of Michigan, Dept. of Materials Science and Engineering, Ann Arbor, MI 48109
D. J. Srolovtz
Affiliation:
University of Michigan, Applied Physics Program, Ann Arbor, MI 48109 University of Michigan, Dept. of Materials Science and Engineering, Ann Arbor, MI 48109
Get access

Abstract

Diffusion of atoms and molecules on surfaces plays an important role in the growth of thin films. In the present study, the surface vacancy diffusion on Cu and Ni (100) and (111) planes is investigated via atomistic simulations. This investigation is performed using the Embedded Atom Method (EAM) interatomic potentials and the finite temperature properties are determined within the local harmonic and quasiharmonic frameworks. This study helps reveal fundamentals of surface vacancy diffusion in the thin film growth. Our results show that the vacancy diffusion is important on (100) surface but it is not the dominant diffusion mechanism on (111) plane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. DeLorenzi, G. and Jacucci, G., Surf. Sci. 116, 391 (1982).CrossRefGoogle Scholar
2. Voter, A. F., in: Modeling of Optical Thin Films, Ed. Jacobson, M. R., SPIE 821, 214 (1987).CrossRefGoogle Scholar
3. Liu, C. L. and Adams, J. B., Surf. Sci. 265, 262 (1992).CrossRefGoogle Scholar
4. LeSar, R., Najafabadi, R., and Srolovitz, D. J., Phys. Rev. Lett. 63, 624 (1989).CrossRefGoogle Scholar
5. Shewmon, P., Diffusion in Solids, (TMS, Wallendale, 1989).Google Scholar
6. Vineyard, G. H., J. Phys. Chem. Solids 3, 121 (1957).CrossRefGoogle Scholar
7. Barron, T. H. K. and Klein, M. L., in Dynamical Properties of Solids, edited by Horton, G. K. and Maradudin, A. A. (North - Holland, Amsterdam, 1974).Google Scholar
8. Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).CrossRefGoogle Scholar
9. Adams, J. B., Foiles, S. M. and Wolfer, W. G., J. Mater. Res. 4, 102 (1989).CrossRefGoogle Scholar
10. Liu, C.L., Cohen, J.M., Adams, J.B. and Voter, A.F., Surf. Sci. 253, 334 (1991).CrossRefGoogle Scholar
11. Newmann, G. and Tolle, V., Phil. Mag. A 54, 619 (1986).CrossRefGoogle Scholar
12. Peterson, N. L., Comments Solid St. Phys. 8, 107 (1978).Google Scholar
13. Gilder, H. M. and Lazarus, D., Phys. Rev. B 11, 4916 (1975).CrossRefGoogle Scholar
14. Seefer, A., Schottky, G. and Schumacher, D., Phys. Stat. Sol. 11, 363 (1965).Google Scholar