Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T03:52:07.409Z Has data issue: false hasContentIssue false

Amorphous Silicon Based Waveguides And Light Modulators For Silicon Low-Cost Photonic Integrated Circuits

Published online by Cambridge University Press:  10 February 2011

G. Cocorullo
Affiliation:
National Research Council – Research Institute for Electromagnetism and Electronic Components (IRECE-CNR), Via Diocleziano, 328 I-80124 Naples, [email protected] also with University of Calabria - Electronic Engineering Dept., 1-87036 Rende (CS), Italy
F. G. Della Corte
Affiliation:
National Research Council – Research Institute for Electromagnetism and Electronic Components (IRECE-CNR), Via Diocleziano, 328 I-80124 Naples, [email protected]
R. De Rosa
Affiliation:
Ente per le Nuove Tecnologie, l'Energia e l'Ambiente – Centro di Portici (ENEA-CRP), Via Vecchio Macello, I-80055 Portici (Naples), Italy
I. Rendina
Affiliation:
National Research Council – Research Institute for Electromagnetism and Electronic Components (IRECE-CNR), Via Diocleziano, 328 I-80124 Naples, [email protected]
A. Rubino
Affiliation:
Ente per le Nuove Tecnologie, l'Energia e l'Ambiente – Centro di Portici (ENEA-CRP), Via Vecchio Macello, I-80055 Portici (Naples), Italy
E. Terzini
Affiliation:
Ente per le Nuove Tecnologie, l'Energia e l'Ambiente – Centro di Portici (ENEA-CRP), Via Vecchio Macello, I-80055 Portici (Naples), Italy
Get access

Abstract

This paper reports about the fabrication and experimental test of an interferometric light intensity modulator integrated in a low loss (0.7 dB/cm), amorphous silicon based waveguide. It measures approximately 1 mm in length, while its cross section is 30-μm-wide and 3-μm-high. The device, which exploits the strong thermo-optic effect in thin film a-Si for its operation, is designed for application at the infrared wavelengths of 1.3 and 1.55 μm. The measured maximum operating on-off switching frequency of the device is 600 kHz. The very simple fabrication technology involves maximum process temperatures of 230 °C, and is therefore compatible with the standard microelectronic technology. This offers a new opportunity for the integration of optical and electronic functions on the same substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Deimel, P. P., Heimhofer, B. B., Krötz, G., Lilienhof, H. J., Wind, J., Müller, G., Voges, E., IEEE Photon. Tech. Lett. 7, 499 (1990)Google Scholar
2. Okamura, M., Suzuki, S., IEEE Photon. Tech. Lett. 6, 412 (1994)Google Scholar
3. Lombardo, S., Campisano, S. U., van den Horen, G. N., Cacciato, A., Polman, A., Appl. Phys. Lett. 63, 1942 (1993)Google Scholar
4. Gusev, O. B., Kuznetsov, A. N., Turekov, E. I., Bresler, M. S., Kudoyarova, V. Kh., Yassievich, I. N., Zakharchenya, B. P., Fuhs, W., Appl. Phys. Lett. 70, 240 (1997)Google Scholar
5. Kruangam, D., Sujaridchai, T., Chirakawikul, K., Ratwises, B., Panyakeow, S., 17th Int. Conf. on Amorphous and Microcrystalline Semicond., Budapest, HU, 1997, p. 332 Google Scholar
6. Cocorullo, G., Corte, F. G. Della, Rosa, R. De, Rendina, I., Rubino, A., Terzini, E., 17th Int. Conf. on Amorphous and Microcrystalline Semicond., Budapest, HU, 1997, p. 78 Google Scholar
7. Gocorullo, G., Corte, F. G. Della, Rendina, I., Minarini, C., Rubino, A., Terzini, E., Optics Letters 21, 2002 (1996)Google Scholar
8. Terzini, E., Cavaliere, G., Conte, G., Mastrogiacomo, A., Nobile, G., Rubino, A., Proc. 12th E.C. Photovoltaic Specialist European Conference, Amsterdam, NL, 1994, pp. 12181221 Google Scholar