Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:58:24.807Z Has data issue: false hasContentIssue false

Amelogenin Induces Biomimetic Mineralization at Specific pH

Published online by Cambridge University Press:  15 February 2011

Stefan Habelitz
Affiliation:
epartment of Growth and Development, University of California, 533 Parnassus Avenue, San Francisco, CA 94143 USA. Department of Preventive and Restorative Dental Sciences, University of California, 707 Parnassus Avenue, San Francisco, CA 94143 USA.
Dustin Ford
Affiliation:
Department of Preventive and Restorative Dental Sciences, University of California, 707 Parnassus Avenue, San Francisco, CA 94143 USA.
Sally J. Marshall
Affiliation:
Department of Preventive and Restorative Dental Sciences, University of California, 707 Parnassus Avenue, San Francisco, CA 94143 USA.
Pamela K. DenBesten
Affiliation:
epartment of Growth and Development, University of California, 533 Parnassus Avenue, San Francisco, CA 94143 USA.
Mehdi Balooch
Affiliation:
Department of Preventive and Restorative Dental Sciences, University of California, 707 Parnassus Avenue, San Francisco, CA 94143 USA.
Grayson W. Marshall
Affiliation:
Department of Preventive and Restorative Dental Sciences, University of California, 707 Parnassus Avenue, San Francisco, CA 94143 USA.
Wu Li
Affiliation:
epartment of Growth and Development, University of California, 533 Parnassus Avenue, San Francisco, CA 94143 USA.
Get access

Abstract

Amelogenin proteins are assumed to control the calcification of dental enamel with a nanoscale precision that facilitates the formation of fibrous apatite crystals organized in a remarkable microstucture. In this study, recombinant full-length human amelogenin induced protein-guided mineralization and the formation of an enamel-like composite material at specific physical-chemical conditions as observed by atomic force microscopy (AFM). Amelogenin bound specifically to fluoroapatite crystals (FAP) of a glass-ceramic substrate at Ca2+ and PO43- concentrations similar to in-vivo conditions and at pH 8. Layers up to 400 nm high, containing elongated crystals, formed on the (001)-planes of FAP within 24h in supersaturated solutions. In contrast, (hk0)-faces grew by only 10-30 nm, but showed nanospheres aligned parallel to the c-axis of FAP. At pHs different from 8, proteins bound non-specifically to substrate and layers on FAP reached only 5-15 nm thickness. Micro-Raman spectroscopy and AFM revealed the formation of a composite material that resembled a structure and composition comparable to human enamel. These observations suggest that certain conditions are required to activate amelogenin to control and promote crystal growth of apatite along the c-axis and to synthesize an enamel-like material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fincham, A. G. Moradian-Oldak, J. & Simmer, J. P. J. Struct. Biol. 126, 270–99. (1999).Google Scholar
2. Robinson, C. Brookes, S. J. Shore, R. C. & Kirkham, J. Eur. J. Oral Sci. 106 Suppl 1, 282–91. (1998).Google Scholar
3. Smith, C. E. Crit. Rev. Oral Biol. Med. 9, 128–61 (1998).Google Scholar
4. Fukae, M. Tanabe, T. Ijiri, H. & Shimizu, M. Tsurumi Shigaku 6, 8794. (1980).Google Scholar
5. Snead, M. L. et al. Biochem Biophys Res. Commun. 129, 812–8. (1985).Google Scholar
6. Fincham, A. G. & Moradian-Oldak, J. Biochem. Biophys. Res. Commun. 197, 248–55. (1993).Google Scholar
7. Moradian-Oldak, J. Matrix Biol. 20, 293305. (2001).Google Scholar
8. Aoba, T. Fukae, M. Tanabe, T. Shimizu, M. & Moreno, E. C. Calcif. Tissue Int. 41, 281–9. (1987).Google Scholar
9. Doi, Y. Eanes, E. D. Shimokawa, H. & Termine, J. D. J. Dent. Res. 63, 98105. (1984).Google Scholar
10. Hunter, G. K. Curtis, H. A. Grynpas, M. D. Simmer, J. P. & Fincham, A. G. Calcif. Tissue Int. 65, 226–31. (1999).Google Scholar
11. Habelitz, S. Marshall, S. J. Marshall, G. W. Jr & Balooch, M. Arch. Oral Biol. 46, 173–83. (2001).Google Scholar
12. Wen, H. B. Moradian-Oldak, J. & Fincham, A. G. Biomaterials 20, 1717–25. (1999).Google Scholar
13. Wen, H. B. Moradian-Oldak, J. Zhong, J. P. Greenspan, D. C. & Fincham A., G. J. Biomed. Mater. Res. 52, 762–73. (2000).Google Scholar
14. Aoba, T. & Moreno, E. C. Calcif Tissue Int 41, 8694. (1987).Google Scholar
15. Moisescu, C. Jana, C. & Russel, C. Journal of Non-Crystalline Solids 248, 169–75 (1999).Google Scholar
16. Moisescu, C. Jana, C. Habelitz, S. Carl, G. & Russel, C. Journal of Non-Crystalline Solids 248, 176–82 (1999).Google Scholar
17. Wen, H. B. Fincham, A. G. & Moradian-Oldak, J. Matrix Biol 20, 387–95. (2001).Google Scholar
18. Wallwork, M. L. et al. Langmuir 17, 25082513. (2001).Google Scholar
19. Li, W., Gao, C. Yan, Y. & DenBesten, P. K. Arch. Oral Biol. (in press).Google Scholar
20. Penel, G. Leroy, G. Rey, C. & Bres, E. Calcif. Tissue Int. 63, 475–81. (1998).Google Scholar
21. Evans, J. S. & Chan, S. I. Biopolymers 34, 507–27. (1994).Google Scholar