Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-06T07:18:09.298Z Has data issue: false hasContentIssue false

5f Delocalization of Bulk FCC Americium and the (111) Surface: A FP-LAPW Electronic Structure Study

Published online by Cambridge University Press:  26 February 2011

Da Gao
Affiliation:
[email protected], University of Texas at Arlington, Physics, United States
Asok K Ray
Affiliation:
[email protected], University of Texas at Arlington, Physics, United States
Get access

Abstract

The electronic properties of bulk fcc americium and the (111) surface have been investigated with the full-potential linearized augmented plane wave (FP-LAPW) method as implemented in the WIEN2K suite of programs The study is carried out for the anti-ferromagnetic ground state of Am at different levels of theory: (1) scalar-relativity vs. full-relativity; (2) local-density approximation (LDA) vs. generalized-gradient approximation (GGA). Our results indicate that spin orbit coupling plays an important role in determining the electronic properties of both bulk fcc americium and the (111) surface. In general, LDA is found to give a higher total energy compared to GGA results. The spin orbit coupling shows a similar effect on the surface calculations regardless of the model, GGA versus LDA. The 5f localized-delocalized transition of americium is employed to explain our results. In addition, the quantum size effects in the surface energies and the work functions of fcc (111) americium ultra thin films (UTF) are also examined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Katz, J. J., Seaborg, G. T., and Morss, L. R., The Chemistry of the Actinide Elements (Chapman and Hall, 1986);10.1007/978-94-009-4077-2Google Scholar
Morss, L. R. and Fuger, J., Eds. Transuranium Elements: A Half Century American Chemical Society, Washington, D. C. 1992);Google Scholar
Katz, J. J., Morss, L. R., Fuger, J., and Edelstein, N. M., Eds. Chemistry of the Actinide and Transactinide Elements (Springer-Verlag, New York, in press);Google Scholar
Heathman, S., Haire, R. G., Le Bihan, T., Lindbaum, A., Litfin, K., Méresse, Y., and Libotte, H., Phys. Rev. Lett. 85, 2961 (2000).10.1103/PhysRevLett.85.2961Google Scholar
2. Lander, G. H. and Fuger, J., Endeavour New Series, 13, 8, (1989).10.1016/0160-9327(89)90044-6Google Scholar
3. Freeman, A. J. and Koelling, D. D., in The Actinides: Electronic Structure and Related Properties, edited by Freeman, A. J. and Darby, J. B. Jr, (Academic, New York, 1974) Vol. I, p. 51.10.1016/B978-0-12-266701-5.50009-7Google Scholar
Johansson, B., Phys. Rev. B. 11, 2740 (1975).10.1103/PhysRevB.11.2740Google Scholar
4. Lindbaum, A., Heathman, S., Litfin, K., Méresse, Y., Haire, R. G., Bihan, T. L., and Libotte, H., Phys. Rev. B. 63, 214101 (2001).Google Scholar
5. Pénicaud, M., J. Phys. Cond. Matt. 17, 257 (2005).10.1088/0953-8984/17/2/002Google Scholar
6. Griveau, J. -C., Rebizant, J., Lander, G. H., and Kotliar, G., Phys. Rev. Lett. 94, 097002 (2005).Google Scholar
7. Ray, A. K. and Boettger, J. C., Phys. Rev. B 70, 085418 (2004);10.1103/PhysRevB.70.085418Google Scholar
Boettger, J. C. and Ray, A. K., Int. J. Quant. Chem., 105, 564 (2005);10.1002/qua.20650Google Scholar
Wu, X. and Ray, A. K., Phys. Rev. B 72, 045115 (2005);Google Scholar
Huda, M. N. and Ray, A. K., Eur. Phys. J. B 40, 337 (2004); Physica B 352, 5 (2004); Eur. Phys. J. B 43, 131 (2005); Physica B 366, 95 (2005); Phys. Rev. B 72, 085101 (2005); Int. J. Quant. Chem. 105, 280 (2005);10.1140/epjb/e2004-00281-yGoogle Scholar
Gong, H. R. and Ray, A. K., Eur. Phys. J. B, in press;Google Scholar
Gong, H. R. and Ray, A. K., submitted for publication.Google Scholar
8. Blaha, P., Schwarz, K., Sorantin, P. I., and Trickey, S. B., Comp. Phys. Comm. 59, 399 (1990);10.1016/0010-4655(90)90187-6Google Scholar
Petersen, M., Wagner, F., Hufnagel, L., Scheffler, M., Blaha, P., and Schwarz, K., Comp. Phys. Comm. 126, 294 (2000);10.1016/S0010-4655(99)00495-6Google Scholar
Schwarz, K., Blaha, P., and Madsen, G. K. H., Comp. Phys. Comm. 147, 71 (2002).10.1016/S0010-4655(02)00206-0Google Scholar
9. Perdew, J. P., Burke, K., and Ernzehof, M., Phys. Rev. Lett. 77, 3865 (1996);Google Scholar
Perdew, J. P. and Wang, Y., Phys. Rev. B. 45, 13244 (1992).10.1103/PhysRevB.45.13244Google Scholar
10. Kutepov, A. L., and Kutepova, S. G., J. Magn. Magn. Mat. 272–276, e329 (2004).10.1016/j.jmmm.2003.12.706Google Scholar
11. Gao, D. and Ray, A. K., submitted for publication.Google Scholar
12. Naegele, J. R., Manes, L., Spirlet, J. C., and Muller, W., Phys. Rev. Lett. 52, 1834 (1984).Google Scholar
13. Gay, J. G., Smith, J. R., Richter, R., Arlinghaus, F. J., and Wagoner, R. H., J. Vac. Sci. Technol. A 2, 931 (1984);10.1116/1.572482Google Scholar
Boettger, J. C., Phys. Rev. B 49, 16798 (1994).10.1103/PhysRevB.49.16798Google Scholar
14. Ray, A. K. and Boettger, J. C., Eur. Phys. J. B 27, 429 (2002);Google Scholar
Gao, D. and Ray, A. K., Eur. Phys. J. B, in press.Google Scholar