Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-03T01:31:41.017Z Has data issue: false hasContentIssue false

Spectroscopic Characterization of Polymer Surfaces

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The surface science of polymer materials has recently grown to a dynamic field, largely because of application in such areas as composite materials, wetting, coatings, adhesion, friction, and biocompatibility. The synthesis of new polymer materials, resulting in desired polymer-surface structures and composition, has become more sophisticated and is driving the development of new spectroscopic probes and continuing evolution of more established methods.

A good example of how instrumentation development has led to better applications in polymer-surface science is to follow the growth of studies using x-ray photoelectron spectroscopy (XPS)—also called electron spectroscopy for chemical analysis (ESCA). ESCA is now routinely used to obtain surface composition of polymers, and to follow processing steps and degradation chemistry. Advances in instrumentation have driven many of these more sophisticated applications.

Nevertheless, to improve the understanding of polymer-surface chemistry, more information is needed about surface structure with further sophistication, at a higher level of precision. For example, the knowledge of orientation and subsequent reactive availability of functional groups and of monomer ar rangement along a chain in copolymers and intrachain interactions is important. Macromolecular chain arrangement, termination, branching, and micromorphological information (i.e., domain size and distribution), molecular-weight distributions at or near the surface (in comparison with the average, bulk distribution), and higher degrees of spatial resolution in all three dimensions are all important in determining sophisticated surface structure-property relationships. To approach this level of structural and reactivity information at surfaces and interfaces, evolution of established methods and development of new methods must both be accomplished.

Type
Polymer Surfaces and Interfaces
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pireaux, J.J., J. Elec. Spec. Rel. Phen. 52 (1990) p. 423.CrossRefGoogle Scholar
2.Dilks, A., Anal. Chem. 53 (1981) p. 802A.CrossRefGoogle Scholar
3.Nebesney, K.W., Masschoff, B.L., and Armstrong, N.R., Anal. Chem. 61 (1989) p. 469A.CrossRefGoogle Scholar
4.Gardella, J.A. Jr., Anal. Chem. 61 (1989) p. 589A.CrossRefGoogle Scholar
5.Gardella, J.A. Jr. and Pireaux, J.J., Anal. Chem. 62 (11) (1990) p. 645A.CrossRefGoogle Scholar
6.Schmitt, J.J., Gardella, J.A. Jr., and Salvati, L. Jr., Macromolecules 22 (1989) p. 4489.CrossRefGoogle Scholar
7.Vargo, T.G., Gardella, J.A. Jr., Meyer, A.E., and Baier, R.E., J. Polym. Sci., Part A: Polym. Chem. 29 (1991) p. 555.CrossRefGoogle Scholar
8.Schamberger, P.S., Gardella, J.A. Jr., Grobe, G.L. III, and Valint, P.L. Jr., “Optimization of Low Temperature Vitrification for Surface Analysis of Hydrate d Hydrogel Polymers” (unpublished manuscript).Google Scholar
9.Benninghoven, A., Rudenauer, F.G., and Werner, H.W., in Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends, edited by Elving, P.J., Wineforder, J.D., and Kolthoff, I.M. (John Wiley & Sons, New York, 1987).Google Scholar
10.Bletsos, I., Hercules, D.M., van Leyen, D., and Benninghoven, A., Macromolecules 20 (1987) p. 407.CrossRefGoogle Scholar
11.Fowler, D., Johnson, R., van Leyen, D., and Benninghoven, A., Anal. Chem. 62 (1990) p. 2088.CrossRefGoogle Scholar
12.Benninghoven, A., Z. Phys. 230 (1970) p. 403.CrossRefGoogle Scholar
13.Benninghoven, A., Jaspers, D., and Sichtermann, W., Appl. Phys. 11 (1976) p. 35.CrossRefGoogle Scholar
14.Benninghoven, A. and Sithermann, W.K., Int. J. Mass Spec. Ion Phys. 12 (1977) p. 595.Google Scholar
15.Gardella, J.A. Jr. and Hercules, D.M., Anal. Chem. 53 (12) (1981) p. 1879.CrossRefGoogle Scholar
16.Gardella, J.A. Jr. and Hercules, D.M., Anal. Chem. 52 (2) (1980) p. 226.CrossRefGoogle Scholar
17.Hook, K.J., Hook, T.J., Wandass, J.H., and Gardella, J.A. Jr., Applied Surface Science 44 (1990) p. 29.CrossRefGoogle Scholar
18.Briggs, D., SIA, Surf. I. Anal. 9 (1986) p. 391.Google Scholar
19.Briggs, D., Org. Mass Spectrom. 22 (1987) p. 91.CrossRefGoogle Scholar
20.Brown, A. and Vickerman, J.C., SIA, Surf. I. Anal. 8 (1986) p. 75.Google Scholar
21.Bletsos, I.V., Hercules, D.M., Magill, J.H., van Leyen, D., Niehuis, E., and Benninghoven, A., Anal. Chem. 60 (1988) p. 938.CrossRefGoogle Scholar
22.Benninghoven, A. and Sichtermann, W.M., Anal. Chem. 50 (1978) p. 1180.CrossRefGoogle Scholar
23.Benninghoven, A. and Sichtermann, W., Int. J. Mass Spectrom. Ion Phys. 38 (1981) p. 351.CrossRefGoogle Scholar
24.Colton, R.J., Campana, J.E., Kidwell, D.A., Ross, M.M., and Wyatt, J.R., Appl. Surf. Sci. 21 (1985) p. 168.CrossRefGoogle Scholar
25.Chait, B.T. and Standing, K.G., Int. I. Mass Spectrom. Ion Phys. 40 (1981) p. 185.CrossRefGoogle Scholar
26.Demirev, J., Olthoff, K., Fenselau, C., and Cotter, R J., Anal. Chem. 59 (1987) p. 1951.CrossRefGoogle Scholar
27.Barber, M., Bordoli, R.J., Sedgwick, R.D., and Tyler, A.N., Nature 293 (1981) p. 270.CrossRefGoogle Scholar
28.Macfarlane, R.D. and Torgerson, D.F., Science 191 (1976) p. 920.CrossRefGoogle Scholar
29.Macfarlane, R.D., Acc. Chem. Res. 15 (1982) p. 268.CrossRefGoogle Scholar
30.Hillenkamp, F., Karas, M., Holtkamp, D., and Klusener, P., Int. J. Mass Spec. Ion Phys. 69 (1986) p. 265.CrossRefGoogle Scholar
31.Pachuta, S.J. and Cooks, R.G., Chem. Rev. 87 (1987) p. 647.CrossRefGoogle Scholar
32.Koenig, J., Polym. Mater. Sci. Eng. 64 (1991) p. 27.Google Scholar
33.Chase, B., Polym. Mater. Sci Eng. 64 (1991) p. 189.Google Scholar
34.Harrick, N., J. Opt. Soc. Am. 55 (1965) p. 851.CrossRefGoogle Scholar
35.Steffens, P., Niehuis, E., Friese, D., Greifendorf, D., and Benninghoven, A., J. Vac. Sci. Technol. A 3 (3) (1985) p. 1322.CrossRefGoogle Scholar
36.Benninghoven, A., Niehuis, E., Heller, T., and Feld, H., J. Vac. Sci. Technol. A 5 (4) (1987) p. 1243.Google Scholar
37.Chen, X., Gardella, J.A. Jr., Ho, T., and Wynne, K.J., J. Macromolecules 28 (1995) p. 1635.CrossRefGoogle Scholar
38.Chen, X., Lee, H.F., and Gardella, J.A. Jr., Macromolecules 26 (1993) p. 4601.CrossRefGoogle Scholar
39.Chen, X., Gardella, J.A. Jr, and Cohen, R.E., Macromolecules 27 (1994) p. 2206.CrossRefGoogle Scholar
40.Chen, X. and Gardella, J.A. Jr., Macromolecules 27 (1994) p. 3363.CrossRefGoogle Scholar
41.Wandass, J.H. and Gardella, J.A. Jr.J. Am. Chem. Soc. 107 (1985) p. 6192.CrossRefGoogle Scholar
42.Wandass, J.H., Schmitt, R.L., and Gardella, J.A. Jr., Appl. Surf. Sci. 40 (1989) p. 85.CrossRefGoogle Scholar
43.Cornelio-Clark, P. and Gardella, J.A. Jr., Langmuir 7 (1991) p. 2279.CrossRefGoogle Scholar
44.Hook, K.J. and Gardella, J.A. Jr., J. Vac. Sci. Technol. A7 (3) (1989) p. 1795.CrossRefGoogle Scholar
45.Cornelio, P.A. and Gardella, J.A. Jr., J. Vac. Sci. Technol. A8 (3) (1990) p. 2283.CrossRefGoogle Scholar
46.Cornelio-Clark, P.A. and Gardella, J.A. Jr., Langmuir 7 (1991) p. 2454.CrossRefGoogle Scholar
47.Johnson, R.W. Jr., Cornelio-Clark, P.A., and Gardella, J.A. Jr., in ACS Symposium Series No. 493, Macromolecular Assemblies in Polymeric Systems, edited by Stroeve, P. and Balazs, A. (American Chemical Society, Washington, 1992) p. 113.CrossRefGoogle Scholar
48.Johnson, R.W. Jr., Cornelio-Clark, P.A., Li, J-X., and Gardella, J.A. Jr. in Secondary Ion Mass Spectrometry (SIMS) VIII, edited by Benninghoven, A., Evans, C.A., Janssen, K.T.F., Tümpner, J., Werner, H. (John Wiley and Sons, New York, 1992) p. 293.Google Scholar
49.Bolbach, G., Plissonnier, M., Galera, R., Blais, J., Dufour, G., and Roulet, H., Thin Solid Films 211 (1992) p. 524.CrossRefGoogle Scholar
50.Hagenhoff, B., Deimel, M., Benninghoven, A., Siegmund, H., and Holtkamp, D., J. Phys. D: Appl. Phys. 25 (1992) p. 818.CrossRefGoogle Scholar
51.Langmuir, I. and Blodgett, K.B., Phys. Rev. 51 (1937) p. 317.Google Scholar
52.A Guide to Ultrathin Organic Films, edited by Ulman, A. (Academic Press, Boston, 1991).Google Scholar
53.Tarlov, M. and Newman, J., Langmuir 8 (1992) p. 1398.CrossRefGoogle Scholar
54.Li, Y., Hung, J., Mclver, R., and Hemminger, J., J. Am. Chem. Soc. 114 (1992) p. 2428.CrossRefGoogle Scholar
55.Gardella, J.A. Jr., Novak, F.P., and Hercules, D.M., Anal. Chem. 56 (1984) p. 1371.CrossRefGoogle Scholar
56.Bletsos, I.V., Hercules, D.M., Greifendorf, D., and Benninghoven, A., Anal. Chem. 57 (1985) p. 2384.CrossRefGoogle Scholar
57.Bletsos, I.V., Hercules, D.M., van Leyen, D., Hagenhoff, B., Niehuis, E., and Benninghoven, A., Anal. Chem. 63 (1991) p. 1953.CrossRefGoogle Scholar
58.Bletsos, I.V., Hercules, D.M., vanLeyen, D., Benninghoven, A., Karakatsanis, C.G., and Rieck, J.N., Anal. Chem. 61 (1989) p. 2142.CrossRefGoogle Scholar
59.Hearn, M.J., Ratner, B.D., and Briggs, D., Macromolecules 21 (1988) p. 2950.CrossRefGoogle Scholar
60.Valenty, S.J., Chera, J.J., Olson, D.R., Webb, K.K., Smith, G.A., and Katz, W.J., J. Am. Chem. Soc. 106 (1984) p. 6155.CrossRefGoogle Scholar
61.Russell, T.P., Deline, V.R., Wakharkar, V.S., and Coulon, G., MRS Bulletin XIV (10) (1989) p. 33.CrossRefGoogle Scholar
62.Vargo, T.C., Thompson, P.M., Gerenser, L.J., Valentini, R.F., Aebischer, P., Hook, D.J., and Gardella, J.A. Jr., Langmuir 8 (1992) p. 130.CrossRefGoogle Scholar
63.Hook, D.J., Vargo, T.G., Gardella, J.A. Jr., Litwiler, K.S., and Bright, F.V., Langmuir 7 (1991) p. 142.CrossRefGoogle Scholar
64.Ho, T., Wynne, K.J., Gardella, J.A. Jr., and Zhuang, H-Z., J. Coll. I. Sci. in press.Google Scholar
65.Zhuang, H-Z., Marra, K. Gribben, Ho, T., Chapman, T.M., and Gardella, J.A. Jr., “Surface Composition of Fluorinated Poly(amide urethane) Block Copolymers by Electron Spectroscopy for Chemical Analysis” (unpublished manuscript).Google Scholar
66.Chapman, T.M. and Gribben, K.L., Macromolecules 26 (1993) p. 7029.Google Scholar
67.Chapman, T.M. and Marra, K. Gribben, Macromolecules 28 (1995) p. 2081.CrossRefGoogle Scholar