Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-21T13:29:10.497Z Has data issue: false hasContentIssue false

Order and Surface Processes in III-V Semiconductor Alloys

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

Semiconductor alloys have become increasingly useful during the last four decades because, through the use of alloys, the properties of semiconductors can be tailored by varying the composition to precisely match the requirements for specific electronic and photonic devices. In addition the use of alloys allows the production of special structures, such as quantum wells, that require rapid changes in bandgap energy during growth. This has led to so-called “bandgap engineering,” in which device designers and epitaxial growers are working together to produce structures having virtually atomic-scale dimensions.

Type
Compositional Modulation and Ordering in Semiconductors
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kuan, T.S., Kuech, T.F., Wang, W.I., and Wilkie, E.L., Phys. Rev. Lett. 54 (1985) p. 201.CrossRefGoogle Scholar
2.Jen, H.R., Cherng, M.J., and Stringfellow, G.B., Appl. Phys. Lett. 48 (1986) p. 1603.CrossRefGoogle Scholar
3.Nakayama, H. and Fujita, H., Inst. Phys. Conf. Ser. 79 (1986) p. 289.Google Scholar
4.Murgatroyd, I.J., Norman, A.G., and Booker, G.R., J. Appl. Phys. 67 (1990) p. 2310.CrossRefGoogle Scholar
5.Kuan, T.S., Wang, W.I., and Wilkie, E.L., Appl. Phys. Lett. 51 (1987) p. 51.CrossRefGoogle Scholar
6.Stringfellow, G.B. and Chen, G.S., J. Vac. Sci. Technol. B 9 (1991) p. 2182.CrossRefGoogle Scholar
7.Wei, S-H. and Zunger, Z., Phys. Rev. B 39 (1989) p. 3279.CrossRefGoogle Scholar
8.Newman, K.E., Shen, J., and Teng, D., Superlattices and Microstructures 6 (1989) p. 245.CrossRefGoogle Scholar
9.Park, K., Salabanca-Riba, L., and Jonker, B.T., Appl. Phys. Lett. 61 (1992) p. 2302; L. Salabanca-Riba, K. Park, and B.T. Jonker, in Magnetic Surfaces, Thin Films, and Multilayers, edited by S.S.P. Parkin, H. Hopster, J-P. Renard, T. Shinjo, and W. Zinn (Mater. Res. Soc. Symp. Proc. 231, Pittsburgh, 1992) p. 347; K.T. Chang and E. Goo, J. Vac. Sci. Technol. A 10 (1992) p. 1549.CrossRefGoogle Scholar
10.LeGoues, F.K., Kesan, V.P., and Iyer, S.S., Phys. Rev. Lett. 64 (1990) p. 40.CrossRefGoogle Scholar
11.Su, L.C., Ho, I.H., and Stringfellow, G.B., J. Appl. Phys. 75 (1994) p. 5135.CrossRefGoogle Scholar
12.Mao, D., Taylor, P.C., Kurtz, S.R., Wu, M.C., and Harrison, W.A., Phys. Rev. Lett. 76 (1996) p. 4769.CrossRefGoogle Scholar
13.Wei, S-H. and Zunger, A., Phys. Rev. B 49 (1994) p. 14337.CrossRefGoogle Scholar
14.Seong, T.Y., Booker, G.R., Norman, A.G., Harris, P.J.F., and Cullis, A.G., Inst. Phys. Conf. Ser. 146 (1995) p. 241; T.Y. Seong, A.G. Norman, G.R. Booker, and A.G. Cullis, J. Appl. Phys. 75 (1994) p. 7852.Google Scholar
15.Stringfellow, G.B., Lindquist, P.F., and Burmeister, R.A., J. Electron. Mater. 1 (1972) p. 437.CrossRefGoogle Scholar
16.Gomyo, A., Iobayashi, K., Kawata, S., Hino, I., Suzuki, T., and Yuasa, T., J. Cryst. Growth 77 (1986) p. 367.CrossRefGoogle Scholar
17.Wei, S-H., Franceschetti, A., and Zunger, A., in Ion Beam Processing of Advanced Electronic Materials, edited by Cheung, N.W, Marwick, A.D., and Roberto, J.B. (Mater. Res. Soc. Symp. Proc. 417, Pittsburgh, 1989) p. 3.Google Scholar
18.Laks, D.B., Wei, S-H., and Zunger, A., Phys. Rev. Lett. 69 (1992) p. 3766.CrossRefGoogle Scholar
19.Ernst, P., Geng, C., Scholz, F., Schweizer, H., Zhang, Y., and Mascarenhas, A., Appl. Phys. Lett. 67 (1995) p. 2347.CrossRefGoogle Scholar
20.Arent, D.J., Bode, M., Bertness, K.A., Kurtz, S.R., and Olson, J.M., Appl. Phys. Lett. 62 (1993) p. 1806.CrossRefGoogle Scholar
21.Kurtz, S.R., Dawson, L.R., Biefeld, R.M., Follstaedt, D.M., and Doyle, B.L., Phys. Rev. B 46 (1992) p. 1909.CrossRefGoogle Scholar
22.Su, L.C., Ho, I.H., and Stringfellow, G.B., J. Cryst. Growth 145 (1994) p. 140.CrossRefGoogle Scholar
23.Stringfellow, G.B., J. Phys. Chem. Solids 33 (1972) p. 665.CrossRefGoogle Scholar
24.Stringfellow, G.B., J. Cryst. Growth 27 (1974) p. 21.CrossRefGoogle Scholar
25.Stringfellow, G.B., Organometallic Vapor Phase Epitaxy: Theory and Practice, ch. 3 (Academic Press, Boston, 1989).Google Scholar
26.Keating, P.N., Phys. Rev. 145 (1966) p. 637.CrossRefGoogle Scholar
27.Fukui, T., J. Appl. Phys. 57 (1985) p. 5188.CrossRefGoogle Scholar
28.Ichimura, M. and Sasaki, A., J. Cryst. Growth 98 (1989) p. 18.CrossRefGoogle Scholar
29.Schabel, M.C. and Martins, J.L., Phys. Rev. B 43 (1991) p. 11873.CrossRefGoogle Scholar
30.Sher, A., van Schilfgaarde, M., Chen, A.B., and Chen, W., Phys. Rev. B 36 (1987) p. 4279.CrossRefGoogle Scholar
31.Ho, I.H. and Stringfellow, G.B., Appl. Phys. Lett. 69 (1996) p. 2701.CrossRefGoogle Scholar
32.Stringfellow, G.B., J. Cryst. Growth 98(1989) p. 108.CrossRefGoogle Scholar
33.Zunger, A. and Mahajan, S., in Handbook on Semiconductors, edited by Moss, T.S. (Elsevier Science B.V., Amsterdam, 1994) p. 1399.Google Scholar
34.Hume-Rothery, W., Electrons, Atoms, Metals, and Alloys, 3rd ed. (Dover, New York, 1963). The first edition was published in 1948.Google Scholar
35.Bernard, J.E., Dandrea, R.G., Ferreira, L.G., Froyen, S., Wei, S-H., and Zunger, A., Electrons, Atoms, Metals, and Alloys 56 (1990) p. 731.Google Scholar
36.Zhang, S.B., Froyen, S., and Zunger, A., Electrons, Atoms, Metals, and Alloys 67 (1995) p. 3141.Google Scholar
37.Chen, G.S., Jaw, D.H., and Stringfellow, G.B., J. Appl. Phys. 69 (1991) p. 4263.CrossRefGoogle Scholar
38.Murata, H., Ho, I.H., Hsu, T.C., and Stringfellow, G.B., Appl. Phys. Lett. 67 (1995) p. 3747.CrossRefGoogle Scholar
39.Murata, H., Hsu, T.C., Ho, I.H., Su, L.C., Hosokawa, Y., and Stringfellow, G.B., Appl. Phys. Lett. 68 (1996) p. 1796.CrossRefGoogle Scholar
40.Murata, H., Ho, I.H., Su, L.C., Hosokawa, Y., and Stringfellow, G.B., J. Appl. Phys. 79 (1996) p. 6895.CrossRefGoogle Scholar
41.Kobayashi, Y. and Kobayashi, N., J. Electron. Mater. 25 (1996) p. 691.CrossRefGoogle Scholar
42.Kamiya, I., Mantese, L., Aspnes, D.E., Kisker, D.W., Fuoss, P.H., Stephenson, G.B., and Brennan, S., J. Cryst. Growth 163 (1996) p. 67.CrossRefGoogle Scholar
43.Su, L.C., Flo, I.H., and Stringfellow, G.B., J. Cryst. Growth 146 (1995) p. 558.CrossRefGoogle Scholar
44.Murata, H., Ho, I.H., and Stringfellow, G.B., J. Cryst. Growth ICMOVPE-96.Google Scholar
45.Murata, H., Lee, S.H., Ho, I.H., and Stringfellow, G.B., J. Vac. Sci. Technol. B 14 (1996) p. 3013.CrossRefGoogle Scholar
46.Plano, W.E., Nam, D.W., Major, J.S., Hsieh, K.C., and Holonyak, N., Appl. Phys. Lett. 53 (1988) p. 2537.CrossRefGoogle Scholar
47.Gavrilovic, P., Dabkowski, F.P., Meehan, K., Williams, J.E., Stutius, W., Hsieh, K.C., Holonyak, N., Shahid, M.A., and Mahajan, S., J. Cryst. Growth 93 (1988) p. 426.CrossRefGoogle Scholar
48.Chun, Y.S., Lee, S.H., Ho, I.H., and Stringfellow, G.B., J. Appl. Phys. in press.Google Scholar
49.Cao, D.S., Reihlen, E.H., Chen, G.S., Kimball, A.W., and Stringfellow, G.B., J. Cryst. Growth 109 (1991) p. 279.CrossRefGoogle Scholar
50.Philips, B.A., Norman, A.G., Seong, T.Y., Mahajan, S., Booker, G.R., Skowronski, M., Harbison, J.P., and Keramidas, V.G., J. Cryst. Growth 140 (1994) p. 249.CrossRefGoogle Scholar