Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T13:50:58.607Z Has data issue: false hasContentIssue false

Optical Probes inside Photonic Crystals

Published online by Cambridge University Press:  31 January 2011

Get access

Extract

The spontaneous emission of an atom is not a property of the atom only; it also depends on the local optical surroundings. The simplest demonstration of this effect was provided by the early experiments of Drexhage, who studied the emission rate of luminescent europium ions close to a mirror. It was found that while the spectral distribution of the emission remained constant, the emission rate was dependent on the position of the Eu3+ ions relative to the mirror. This effect is due to interference of the optical modes incident to and reflected at the mirror. Since then, the modified spontaneous emission of atoms in cavities has been studied extensively. More recently, the control of spontaneous emission in solid-state systems has become of great interest because it enables the tailoring of the emission properties of optical materials. It was shown how the spontaneous-emission rate of optical probe ions or dyes inside dielectric films is modified by the presence of a dielectric interface, in a dielectric multilayer, or a microcavity. The dependence of the decay rate on the optical surroundings in these one-dimensional systems can be described in terms of Fermi's “golden rule,” which states that the decay rate is proportional to the local optical density of states (DOS). The spatial variation in the DOS is due to the interference of optical modes reflected and refracted at the dielectric interface(s).

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Purcell, E.M., Phys. Rev. 69 (1946) p. 681.Google Scholar
2.Drexhage, K.H., J. Lumin. 12 (1970) p.693.CrossRefGoogle Scholar
3.Heinzen, D.J., Childs, J.J., Thomas, J.E., and Feld, M.S., Phys. Rev. Lett. 58 (1987) p.1320; S. Haroche, in Fundamental Systems in Quantum Optics, edited by J. Dalibard, J.M. Raimond, and J. Zinn-Justin (North-Holland, Amsterdam, 1992).Google Scholar
4.Snoeks, E., Lagendijk, A., and Polman, A., Phys. Rev. Lett. 74 (1995) p.2459.Google Scholar
5.Hensen, T.M., de Dood, M.J.A., and Polman, A., J. Appl. Phys. 88 (2000) p.5142.Google Scholar
6.Urbach, H.P. and Rikken, G.J.L.A., Phys. Rev. A 57 (1997) p.3913.Google Scholar
7.de Dood, M.J.A., Slooff, L.H., Moroz, A., Blaaderen, A. van, and Polman, A., Phys. Rev. A 64 (2001) in press.Google Scholar
8.For a review, see Barnes, W.L., J. Mod. Opt. 45 (1998) p.661.Google Scholar
9.Vredenberg, A.M., Hunt, N.E.J., Schubert, E.F., Jacobson, D.C., Poate, J.M., and Zydzik, G.J., Phys. Rev. Lett. 71 (1993) p.517.Google Scholar
10.Yablonovitch, E., Phys. Rev. Lett. 58 (1987) p.2059.Google Scholar
11.John, S. and Wang, J., Phys. Rev. Lett. 64 (1990) p.2418.CrossRefGoogle Scholar
12.Sprik, R., van Tiggelen, B.A., and Lagendijk, A., Europhys. Lett. 35 (1996) p.265.CrossRefGoogle Scholar
13.Asatryan, A.A., Busch, K., McPhedran, R.C., Botten, L.C., de Sterke, C.M., and Nicorovici, N.-A.P., Phys. Rev. E 63 (2001) article No. 44612.Google Scholar
14.Suzuki, T. and Yu, P.K.L., J. Opt. Soc. Am. B 12 (1995) p.570.Google Scholar
15.Slooff, L.H., de Dood, M.J.A., Blaaderen, A. van, and Polman, A., Appl. Phys. Lett. 76 (2000) p.3682.CrossRefGoogle Scholar
16.Berkhout, B., de Dood, M.J.A., Blaaderen, A. van, and Polman, A., unpublished manuscript.Google Scholar
17.Megens, M., Wijnhoven, J.E.G.J., Lagendijk, A., and Vos, W.L., J. Opt. Soc. Am. B 16 (1999) p.1403.Google Scholar
18.Megens, M., Wijnhoven, J.E.G.J., Lagendijk, A., and Vos, W.L., Phys. Rev. A 59 (1999) p.4727; M. Megens, H.P. Schriemer, A. Lagendijk, and W.L. Vos, Phys. Rev. Lett. 83 (1999) p.5401.CrossRefGoogle Scholar
19.Vos, W.L., Sprik, R., Blaaderen, A. van, Imhof, A., Lagendijk, A., and Wegdam, G.H., Phys. Rev. B 53 (1996) p.16231.Google Scholar
20.Bogomolov, V.N., Gaponenko, S.V., Germanenko, I.N., Kapitonov, A.M., Petrov, E.P., Gaponenko, N.V., Prokofiev, A.V., Ponyavina, A.N., Silvanovich, N.I., and Samoilovich, S.M., Phys. Rev. E 55 (1997) p.7619; S.G. Romanov, A.V. Fokin, V.I. Alperovich, N.P. Johnson, and R.M. De La Rue, Phys. Status Solidi A 164 (1997) p.169; T. Yamasaki and T. Tsutsui, Appl. Phys. Lett. 72 (1998) p.1957; A. Blanco, C. Lopez, R. Mayoral, H. Miguez, F. Meseguer, A. Mifsud, and J. Herrero, Appl. Phys. Lett. 73 (1998) p.1781.Google Scholar
21.Imhof, A., Megens, M., Engelberts, J.J., de Lang, D.T.N., Sprik, R., and Vos, W.L., J. Phys. Chem. B 103 (1999) p.1408.CrossRefGoogle Scholar
22.Li, Z.Y. and Zhang, Z.Q., Phys. Rev. B 63 (2001) article No. 125106.Google Scholar
23.Wijnhoven, J.E.G.J. and Vos, W.L., Science 281 (1998) p.802.Google Scholar
24.Schriemer, H.P., van Driel, H.M., Koenderink, A.F., and Vos, W.L., Phys. Rev. A 63 (2001) article No. 011801.Google Scholar
25.Koenderink, A.F., Megens, M., van Soest, G., Vos, W.L., and Lagendijk, A., Phys. Lett. A 268 (2000) p.104.CrossRefGoogle Scholar
26.van Driel, H.M. and Vos, W.L., Phys. Rev. B 62 (2000) p.9872.Google Scholar
27.Lin, S.Y., Fleming, J.G., Hetherington, D.L., Smith, B.K., Biswas, R., Ho, K.M., Sigalas, M.M., Zubrzycki, W., Kurtz, S.R., and Bur, J., Nature 394 (1998) p.251.CrossRefGoogle Scholar
28.de Dood, M.J.A., Polman, A., Lin, S., and Fleming, J., unpublished manuscript.Google Scholar
29.Whittaker, D.N. and Culshaw, I.S., Phys. Rev. B 60 (1999) p.2610.CrossRefGoogle Scholar
30.Zijlstra, T., van der Drift, E.W.J.M., de Dood, M.J.A., Snoeks, E., and Polman, A., J. Vac. Sci. Technol., B 17 (1999) p.2734.Google Scholar
31.Vossen, D.L.J., de Dood, M.J.A., Dillen, T. van, Zijlstra, T., Drift, E. van der, Polman, A., and Blaaderen, A. van, Adv. Mater. 12 (2000) p.1437.Google Scholar
32.Isshiki, H., Kimura, T., de Dood, M.J.A., and Polman, A., unpublished manuscript.Google Scholar
33.Vlasov, Y.A., Luterova, K., Pelant, I., Hönerlage, B., and Astratov, V.N., Appl. Phys. Lett. 71 (1997) p.1616.CrossRefGoogle Scholar
34.Frolov, S.V., Vardeny, Z.V., Yoshino, K., Zakhidov, A., and Baughman, R.H., Phys. Rev. B 59 (1999) p.R5284.CrossRefGoogle Scholar
35.Wiersma, D.S., Nature 406 (2000) p.132.Google Scholar
36.Painter, O., Lee, R.K., Scherer, A., Yariv, A., O'Brien, J.D., Dapkus, P.D., and Kim, I., Science 284 (1999) p.1819.CrossRefGoogle Scholar
37.Boroditsky, M., Krauss, T.F., Coccioli, R., Vrijen, R., Bhat, R., and Yablonovitch, E., Appl. Phys. Lett. 75 (1999) p.1036.Google Scholar
38.Meier, M., Dodabalapur, A., Rogers, J.A., Slusher, R.E., Mekis, A., Timko, A., Murray, C.A., Ruel, R., and Nalamasu, O., J. Appl. Phys. 86 (1999) p.3502.Google Scholar