Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T14:09:31.971Z Has data issue: false hasContentIssue false

Carbon-Based Membranes

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Inorganic carbon-based membranes for gas separation comprise materials that are fabricated through pyrolysis of a precursor material (often a synthetic polymer), and the more recently discovered carbon nanotubes. Fabrication, assembly into different architectures, and mechanism of operation are summarized for precursor-based carbon membranes, with a focus on selective surface flow and molecular sieving. Only preliminary work on carbon nanotube-based membranes for gas separation has been published. Their unusual transport properties, however, promise their use in gas separation in the future. In light of this application, structural properties and results relating to flow through these tubular structures are summarized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Freemantle, M., Chem. Eng. News (October 3, 2005) p. 49.CrossRefGoogle Scholar
2 Ismail, A.F. and David, L.I.B. J. Membr. Sci. 193 (2001) p. 1.CrossRefGoogle Scholar
3 Saufi, S.M. and Ismail, A.F. Carbon 42 (2004) p. 241.CrossRefGoogle Scholar
4 Iijima, S. Nature 354 (1991) p. 56.CrossRefGoogle Scholar
5 Dillon, A.C. Jones, K.M. Bekkedahl, T.A. Klang, C.H. Bethune, D.S. and Heben, M.J. Nature 386 (1997) p. 377.CrossRefGoogle Scholar
6 Sznejer, G.A. Efremenko, I. and Sheintuch, M. AIChE J. 50 (2004) p. 596.CrossRefGoogle Scholar
7 Fuertes, A.B. and Centeno, T.A. J. Membr. Sci. 144 (1998) p. 105.CrossRefGoogle Scholar
8 Hatori, H. Takagi, H. and Yamada, Y. Carbon 42 (2004) p. 1169.CrossRefGoogle Scholar
9 Rao, A.M. and Sircar, S. Gas Sep. Purif. 7 (1993) p. 279.CrossRefGoogle Scholar
10 Rao, A.M. and Sircar, S. J. Membr. Sci. 85 (1993) p. 253.CrossRefGoogle Scholar
11 Viera-Linhares, A.M. and Seaton, N.A. Chem. Eng. Sci. 58 (2003) p. 4129.CrossRefGoogle Scholar
12 Sircar, S. Waldron, W.E. Rao, M.B. and Anand, M. Sep. Purif. Technol. 17 (1999).CrossRefGoogle Scholar
13 Viera, A.M.-Linhares and Seaton, N.A. Chem. Eng. Sci. 58 (2003) p. 5251.CrossRefGoogle Scholar
14 Villar-Rodil, S., Denoyel, R. Rouquerol, J. Martínez-Alonso, A., and Tascón, J.M.D., Chem. Mater. 14 (2002) p. 4328.CrossRefGoogle Scholar
15 Choudhary, T.V. Sivadinarayana, C. and Goodman, D.W. Chem. Eng. J. 93 (2003) p. 69.CrossRefGoogle Scholar
16 Service, R.F. Science 290 (2000) p. 246.CrossRefGoogle ScholarPubMed
17 Odom, T.W. Huang, J.L., Kim, P. and Lieber, C.M. Nature 391 (1998) p. 62.CrossRefGoogle Scholar
18 Wildöer, J.W.G., Venema, L.C. Rinzler, A.C. Smalley, R.E. and Dekker, C. Nature 391 (1998) p. 59.CrossRefGoogle Scholar
19 O'Connell, M.J., Bachilo, S.M. Huffman, C.B. Moore, V.C. Strano, M.S. Haroz, E.H. Rialon, K.L. Boul, P.J. Noon, W.H. Kittrell, C. Ma, J. Hauge, R.H. Weisman, R.B. and Smalley, R.E. Science 297 (2002) p. 593.CrossRefGoogle Scholar
20 Dyke, C.A. and Tour, J.M. Chem. Eur. J. 10 (2004) p. 812.CrossRefGoogle Scholar
21 Williams, K.A. and Eklund, P.C. Chem. Phys. Lett. 320 (2000) p. 352.CrossRefGoogle Scholar
22 Dresselhaus, M.S. Williams, K.A. and Eklund, P.C. Mat. Res. Bull. 24 (1999) p. 45.CrossRefGoogle Scholar
23 Hynek, S. Fuller, W. and Bentley, J. Int. J. Hydrogen Energy 22 (1997) p. 601.CrossRefGoogle Scholar
24 Cheng, H.M. Yang, Q.H. and Liu, C. Carbon 39 (2000) p. 1447.CrossRefGoogle ScholarPubMed
25 Ding, R.G. Lu, G.Q. Yan, Z.F. and Wilson, M.A. J. Nanosci. Nanotechnol. 1 (2001) p. 7.CrossRefGoogle Scholar
26 Schlapbach, L. and Züttel, A., Nature 414 (2001) p. 353.CrossRefGoogle Scholar
27 Zhou, L. Ren. Sust. Energy Rev. 9 (2005) p. 395.CrossRefGoogle Scholar
28 Centrone, A. Brambilla, L. and Zerbi, G. Phys. Rev. B71 245406 (2005).CrossRefGoogle Scholar
29 Efremenko, I. and Sheintuch, M. Langmuir 21 (2005) p. 6286.CrossRefGoogle Scholar
30 Lan, A. and Mukasyan, A. J. Phys. Chem. B109 (2005) p. 16011.CrossRefGoogle Scholar
31 Panella, B. Hirscher, M. and Roth, S. Carbon 43 (2005) p. 2209.CrossRefGoogle Scholar
32 Rzepka, M. Bauer, E. Reichenauer, G. Schliermann, T. Bernhardt, B. Bohmhammel, K. Henneberg, E. Knoll, U. Maneck, H.E. and Braue, W. J. Phys. Chem. B109 (2005) p. 14979.CrossRefGoogle Scholar
33 Hummer, G. Rasaiah, J.C. and Noworyta, J.P. Nature 414 (2001) p. 188.CrossRefGoogle Scholar
34 Koga, K. Gao, G.T. Tanaka, H. and Zeng, X.C. Nature 412 (2001) p. 802.CrossRefGoogle Scholar
35 Bienfait, M. Asmussen, B. Johnson, M. and Zeppenfeld, P. Surf. Sci. 460 (2000) p. 243.CrossRefGoogle Scholar
36 Sun, L. and Crooks, R.M. J. Braz. Chem. Soc. 122 (2000) p. 12340.Google Scholar
37 Wang, Q. Challa, S.R. Sholl, D.S. and Johnson, J.K. Phys. Rev. Lett. 82 (1999) p. 956.CrossRefGoogle Scholar
38 Power, T.D. Skoulidas, A.I. and Sholl, D.S. J. Am. Chem. Soc. 124 (2002) p. 1858.CrossRefGoogle Scholar
39 Cooper, S.M. Cruden, B.A. Meyyappan, M. Raju, R. and Roy, S. Nano Lett. 4 (2004) p. 377.CrossRefGoogle Scholar
40 Skoulidas, A.I. Ackerman, D.M. Johnson, J.K. and Sholl, D.S. Phys. Rev. Lett. 89 185901 (2002).CrossRefGoogle Scholar
41 Holt, J.K. Park, H.G. Wang, Y. Stadermann, M. Artyukhin, A.B. Grigoropoulos, C.P. Noy, A., and Bakajin, O. Science 312 (2006) p. 1034.CrossRefGoogle Scholar
42 Majumder, M. Chopra, N. Andrews, R. and Hinds, B.J. Nature 438 (2005) p. 44.CrossRefGoogle Scholar
43 Holt, J.K. Noy, A. Huser, T. Eaglesham, D. and Bakajin, O. Nano Lett. 4 (2004) p. 2245.CrossRefGoogle Scholar
44 Ren, Y. and Price, D.L. Appl. Phys. Lett. 79 (2001) p. 3684.CrossRefGoogle Scholar
45 Miller, S.A. Young, V.Y. and Martin, C.R. J. Am. Chem. Soc. 123 (2001).Google Scholar