Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T12:12:23.704Z Has data issue: false hasContentIssue false

Visualizing reacting single atoms in chemical reactions: Advancing the frontiers of materials research

Published online by Cambridge University Press:  13 July 2015

Edward D. Boyes
Affiliation:
University of York; [email protected]
Pratibha L. Gai
Affiliation:
University of York; [email protected]
Get access

Abstract

Heterogeneous gas–solid catalyst reactions occur at the atomic level, and understanding and controlling complex catalytic reactions at this level is crucial for the development of improved processes and materials. There are postulations that single atoms and very small clusters can act as primary active sites in chemical reactions. Early applications of our novel aberration-corrected (AC) environmental (scanning) transmission electron microscope (E(S)TEM) with single-atom resolution are described. This instrument combines, for the first time, controlled operating temperatures and a continuous gas environment around the sample with full AC STEM capabilities for real-time in situ analysis and visualization of single atoms and clusters in nanoparticle catalysis. ESTEM imaging and analysis in controlled gas and temperature environments can provide unique insights into catalytic reaction pathways that may involve metastable intermediate states. Benefits include new knowledge and more environmentally friendly technological processes for health care and renewable energy as well as improved or replacement mainstream technologies in the chemical and energy industries.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gai, P.L., Boyes, E.D., Microsc. Res. Tech. 72, 153 (2009).CrossRefGoogle Scholar
Gai, P.L., Kourtakis, K., Science 267, 661 (1995).CrossRefGoogle Scholar
Boyes, E.D., Gai, P.L., Ultramicroscopy 67, 219 (1997).CrossRefGoogle Scholar
Haggin, J., Chem. Eng. News 73 (30), 39 (1995).Google Scholar
Gai, P.L., Adv. Mater. 10, 1259 (1998).3.0.CO;2-5>CrossRefGoogle Scholar
Butler, E.P., Hale, K.F., Dynamic Experiments in the Electron Microscope (North Holland, Amsterdam, 1981).Google Scholar
Gai, P.L., Boyes, E.D., Helveg, S., Hansen, P.L., Giorgio, S., Henry, C.R., MRS Bull. 32 (12), 1044 (2007).CrossRefGoogle Scholar
Gai, P.L., Sharma, R., Ross, F.M., MRS Bull. 33 (2), 107 (2008).CrossRefGoogle Scholar
Helveg, S., Hansen, P.L., Catal. Today 111, 68 (2005).CrossRefGoogle Scholar
Sharma, R., Crozier, P.A., in Handbook of Microscopy for Nanotechnology, Yao, N., Wang, Z., Eds. (Kluwer, Dordrecht, The Netherlands, 2005), chap. 17.Google Scholar
Zakhaov, D., Zamylrov, D., Mane, A., Elam, J., Ribiero, F., Stach, E., Microsc. Microanal. 12, 2 (2006).Google Scholar
Lopez-Cartes, C., Bernal, S., Calvino, J.J., Cauqui, M.A., Blanco, G., Perez-Omil, J.A., Pintado, J.M., Helveg, S., Hansen, P.L.Chem. Commun. 5, 644 (2003).CrossRefGoogle Scholar
Hansen, T.W., Wagner, J.B., Dunin-Borkowski, R.E.. Mater. Sci. Technol. 26, 1338 (2010).CrossRefGoogle Scholar
Walsh, M., Yoshida, K., Kuwabara, A., Pay, M., Gai, P.L., Boyes, E.D., Nano Lett. 12, 2027 (2012).CrossRefGoogle Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., Urban, K., Nature 392, 768 (1998).CrossRefGoogle Scholar
Gai, P.L., Boyes, E.D., Microsc. Microanal. 11, 1526 (2005).CrossRefGoogle Scholar
Boyes, E.D., Gai, P.L., C.R. Phys. 15, 200 (2014).CrossRefGoogle Scholar
Boyes, E.D., Ward, M., Lari, L., Gai, P.L., Ann. Phys. (Berlin) 525, 423 (2013).CrossRefGoogle Scholar
Gai, P.L., Lari, L., Ward, M., Boyes, E.D., Chem. Phys. Lett. 592, 355 (2014).CrossRefGoogle Scholar
Urban, K., Jia, C.L., Houben, L., Lentzen, M., Mi, S.B., Tillman, K.. Philos. Trans. R. Soc. Lond. A 367, 3735 (2009).Google Scholar
Crewe, A.V., Wall, J., Langmore, J., Science 168, 1338 (1970).CrossRefGoogle Scholar
LeBeau, J.M., Findlay, S.D., Wang, X., Jacobson, A.J., Allen, L.J., Stemmer, S., Phys. Rev. B Condens. Matter 79, 214110 (2009).CrossRefGoogle Scholar
Batson, P., Dalby, N., Krivanek, O., Nature 418, 617 (2002).CrossRefGoogle Scholar
Gai, P.L., Montero, J., Wilson, K., Lee, A., Boyes, E.D., Catal. Lett. 132, 182 (2009).CrossRefGoogle Scholar