Published online by Cambridge University Press: 31 January 2011
Understanding current flow through molecular conductors involves simulating the contact surface physics, the molecular chemistry, the device electrostatics, and the quantum kinetics of nonequilibrium transport, along with more sophisticated processes such as scattering and many-body effects.We summarize our current theoretical understanding of transport through such nanoscale devices. Our approach is based on self-consistently combining the nonequilibrium Green's function (NEGF) formulation of transport with an electronic structure calculation of the molecule.We identify the essential ingredients that go into such a simulation. While experimental data for many of the inputs required for quantitative simulation are still evolving, the general framework laid down in this treatment should still be applicable.We use these concepts to examine a few prototype molecular devices, such as wires, transistors, and resonant-tunneling diodes.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.