Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T14:56:57.774Z Has data issue: false hasContentIssue false

Modeling the effects of material chemistry on water flow enhancement in nanotube membranes

Published online by Cambridge University Press:  12 April 2017

Francesco Calabrò*
Affiliation:
Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, Italy; [email protected]
Get access

Abstract

This article discusses the modeling of liquid flow inside nanotube membranes. Applying known simplifications to the classical fluid model leads to the so-called Hagen–Poiseuille equation, which predicts no flow for diameters up to 1 nm, and very modest flows in nanochannels up to 100 nm. The main feature of classical fluid dynamics that negates the possibility of high flow is the assumption that fluid molecules closest to the channel wall stick to it, the no-slip boundary condition. In the past 10 years, a wealth of experimental evidence has, on the contrary, demonstrated significant water flow in nanotubes with diameters equal to or smaller than 1 nm, opening the possibility of nanotube membranes capable of high flows and fine separation. These high flows have also been observed in molecular dynamics simulations, particularly for water flowing through carbon nanotubes, showing the presence of strong water slip near the walls of the nanotubes. The term “flow enhancement” has been introduced to refer to the ratio of predicted (or measured) flows and the no-slip Hagen–Poiseuille equation. Both experimental and modeling results point to a strong effect on flow enhancement of the interaction between the fluid and the tube’s wall, particularly the wall surface chemistry and structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lee, K.P., Arnot, T.C., Mattia, D., J. Membr. Sci. 370, 1 (2011).Google Scholar
Trivedi, S., Alameh, K., SpringerPlus 5, 1158 (2016).Google Scholar
Corry, B., Energy Environ. Sci. 4, 751 (2011).Google Scholar
Mattia, D., Lee, K.P., Calabrò, F., Curr. Opin. Chem. Eng. 4, 32 (2014).Google Scholar
Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A., Bakajin, O., Science 312, 1034 (2006).CrossRefGoogle Scholar
Majumder, M., Chopra, N., Andrews, R., Hinds, B.J., Nature 438 (7064), 44 (2005).Google Scholar
Whitby, M., Quirke, N., Nat. Nanotechnol. 2, 87 (2007).Google Scholar
Ritos, K., Mattia, D., Calabrò, F., Reese, J.M., J. Chem. Phys. 140 (1), 014702 (2014).CrossRefGoogle Scholar
Mattia, D., Leese, H., Lee, K.P., J. Membr. Sci. 475, 266 (2015).CrossRefGoogle Scholar
Mattia, D., Calabrò, F., Microfluid. Nanofluid. 13, 125 (2012).Google Scholar
Calabrò, F., Lee, K.P., Mattia, D., Appl. Math. Lett. 26, 991 (2013).CrossRefGoogle Scholar
Majumder, M., Chopra, N., Hinds, B.J., ACS Nano 5, 3867 (2011).CrossRefGoogle Scholar
Du, F., Qu, L., Xia, Z., Feng, L., Dai, L., Langmuir 27, 8437 (2011).Google Scholar
Lee, C., Baik, S., Carbon 48 (8), 2192 (2010).Google Scholar
Mi, W., Lin, Y.S., Li, Y.. J. Membr. Sci. 304 (1–2), 1 (2007).Google Scholar
Baek, Y., Kim, C., Seo, D.K., Kim, T., Lee, J.S., Kim, Y.H., Ahn, K.H., Bae, S.S., Lee, S.C., Lim, J., Lee, K., Yoon, J., J. Membr. Sci. 460, 171 (2014).Google Scholar
Yu, M., Funke, H.H., Falconer, J.L., Noble, R.D., Nano Lett. 9, 225 (2008).Google Scholar
Ruckenstein, E., Rajora, P., J. Colloid Interface Sci. 96 (2), 488 (1983).CrossRefGoogle Scholar
Blake, T.D., Colloids Surf. 47, 135 (1990).Google Scholar
Sisan, T., Lichter, S., Microfluid. Nanofluid. 11, 787 (2011).CrossRefGoogle Scholar
Walther, J.H., Ritos, K., Cruz-Chu, E.R., Megaridis, C.M., Koumoutsakos, P., Nano Lett. 13, 1910 (2013).CrossRefGoogle Scholar
Corry, B., J. Phys. Chem. B 112 (5), 1427 (2008).Google Scholar
Kannam, S.K., Todd, B.D., Hansen, J.S., Daivis, P.J., J. Chem. Phys. 138, 94701 (2013).CrossRefGoogle Scholar
Werder, T., Walther, J.H., Jaffe, R.L., Halicioglu, T., Koumoutsakos, P., J. Phys. Chem. B 107 (6), 1345 (2003).CrossRefGoogle Scholar
Mattia, D., Gogotsi, Y., Microfluid. Nanofluid. 5, 289 (2008).Google Scholar
Köhler, M.H., Barros da Silva, L., Chem. Phys. Lett. 645, 38 (2016).CrossRefGoogle Scholar
Thomas, J.A., McGaughey, A.J.H., Phys. Rev. Lett. 102, 184502 (2009).Google Scholar
Tretheway, D.C., Meinhart, C.D., Phys. Fluids 14, L9 (2002).Google Scholar
Choi, C.H., Westin, J.A., Breuer, K.S., Phys. Fluids 15, 2897 (2003).Google Scholar
Watanabe, K., Udagawa, Y., Udagawa, H., J. Fluid Mech. 381, 225 (1999).Google Scholar
Lee, K.P., Leese, H., Mattia, D., Nanoscale 4 (8), 2621 (2012).Google Scholar
Joseph, S., Aluru, N.R., Nano Lett. 8, 452 (2008).Google Scholar
Nicholls, W.D., Borg, M.K., Lockerby, D.A., Reese, J.M., Mol. Simul. 38 (10), 781 (2012).CrossRefGoogle Scholar
Majumder, M., Corry, B., Chem. Commun. 47, 7683 (2011).Google Scholar
Mattia, D., Bau, H.H., Gogotsi, Y., Langmuir 22, 1789 (2006).CrossRefGoogle Scholar
Mattia, D., Rossi, M.P., Kim, B.M., Korneva, G., Bau, H.H., Gogotsi, Y., J. Phys. Chem. B 110, 9850 (2006).Google Scholar
Mattia, D., Leese, H., Calabrò, F., Philos. Trans. R. Soc. Lond. A 374 (2060), 20150268 (2016).Google Scholar
Nicholls, W.D., Borg, M.K., Lockerby, D.A., Reese, J.M., Microfluid. Nanofluid. 12, 257 (2012).Google Scholar
Sisavath, S., Jing, X., Pain, C.C., Zimmerman, R.W., J. Fluids Eng. 124 (1), 273 (2002).CrossRefGoogle Scholar
Chan, W.-F., Chen, H.-Y., Surapathi, A., Taylor, M.G., Shao, X., Marand, E., Johnson, J.K., ACS Nano 7, 5308 (2013).Google Scholar
Shen, J.N., Yu, C.C., Ruan, H.M., Gao, C.J., Van der Bruggen, B., J. Membr. Sci. 442, 18 (2013).Google Scholar
Wu, H., Tang, B., Wu, P., J. Membr. Sci. 428, 425 (2013).Google Scholar
Choi, J.-H., Jegal, J., Kim, W.-N., J. Membr. Sci. 284, 406 (2006).Google Scholar
Bedewy, M., Meshot, E.R., Guo, H., Verploegen, E.A., Lu, W., Hart, A.J., J. Phys. Chem. C 113 (48), 20576 (2009).Google Scholar
Menon, M., Richter, E., Mavrandonakis, A., Froudakis, G., Andriotis, A., Phys. Rev. B Condens. Matter 69, 1 (2004).Google Scholar
Malek, K., Sahimi, M., J. Chem. Phys. 132, 014310 (2010).Google Scholar