Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T14:52:40.875Z Has data issue: false hasContentIssue false

Impact of pressure on the structure of glass and its material properties

Published online by Cambridge University Press:  10 October 2017

Philip S. Salmon
Affiliation:
University of Bath, UK; [email protected]
Liping Huang
Affiliation:
Rensselaer Polytechnic Institute, USA; [email protected]
Get access

Abstract

High pressures have a significant impact on the structure-related properties of glass and are encountered in scenarios ranging from fracture mechanics, where stresses in the gigapascal regime are easily generated by sharp-contact loading, to the manufacture of permanently densified materials with tuned physical characteristics. Here, we consider pressure-induced structural changes that occur in glass and show that, for oxide materials, the oxygen-packing fraction plays a key role in determining when these changes are likely to occur. Fivefold coordinated Si atoms appear as important intermediaries in the pressure-induced deformation of silica glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bridgman, P.W., Šimon, I., J. Appl. Phys. 24, 405 (1953).Google Scholar
Mackenzie, J.D., J. Am. Ceram. Soc. 46, 461 (1963).Google Scholar
Mackenzie, J.D., J. Am. Ceram. Soc. 47, 76 (1964).CrossRefGoogle Scholar
Cohen, H.M., Roy, R., Phys. Chem. Glasses 6, 149 (1965).Google Scholar
Grimsditch, M., Phys. Rev. Lett. 52, 2379 (1984).Google Scholar
Grande, T., Holloway, J.R., McMillan, P.F., Angell, C.A., Nature 369, 43 (1994).CrossRefGoogle Scholar
Rouxel, T., J. Am. Ceram. Soc. 90, 3019 (2007).CrossRefGoogle Scholar
Deschamps, T., Margueritat, J., Martinet, C., Mermet, A., Champagnon, B., Sci. Rep. 4, 7193 (2014).CrossRefGoogle Scholar
Rouxel, T., Philos. Trans. R. Soc. Lond. A 373, 20140140 (2015).Google Scholar
Guerette, M., Ackerson, M.R., Thomas, J., Yuan, F., Watson, E.B., Walker, D., Huang, L., Sci. Rep. 5, 15343 (2015).Google Scholar
Brazhkin, V.V., Lyapin, A.G., J. Phys. Condens. Matter 15, 6059 (2003).CrossRefGoogle Scholar
Machon, D., Meersman, F., Wilding, M.C., Wilson, M., McMillan, P.F., Prog. Mater. Sci. 61, 216 (2014).Google Scholar
Salmon, P.S., Zeidler, A., J. Phys. Condens. Matter 27, 133201 (2015).CrossRefGoogle Scholar
Kohara, S., Salmon, P.S., Adv. Phys. X 1, 640 (2016).Google Scholar
Rouxel, T., Ji, H., Guin, J.P., Augereau, F., Rufflé, R., J. Appl. Phys. 107, 094903 (2010).Google Scholar
Gy, R., Mater. Sci. Eng. B 149, 159 (2008).Google Scholar
Varshneya, A.K., Int. J. Appl. Glass Sci. 1, 131 (2010).CrossRefGoogle Scholar
Luo, J., Lezzi, P.J., Vargheese, K.D., Tandia, A., Harris, J.T., Gross, T.M., Mauro, J.C., Front. Mater. 3, 52 (2016).Google Scholar
Rouxel, T., Ji, H., Hammouda, T., Moréac, A., Phys. Rev. Lett. 100, 225501 (2008).CrossRefGoogle Scholar
Zeidler, A., Salmon, P.S., Phys. Rev. B Condens. Matter 93, 214204 (2016).CrossRefGoogle Scholar
Salmon, P.S., Zeidler, A., Phys. Chem. Chem. Phys. 15, 15286 (2013).CrossRefGoogle Scholar
Zeidler, A., Salmon, P.S., Skinner, L.B., Proc. Natl. Acad. Sci. U.S.A. 111, 10045 (2014).Google Scholar
Kono, Y., Kenney-Benson, C., Ikuta, D., Shibazaki, Y., Wang, Y., Shen, G., Proc. Natl. Acad. Sci. U.S.A. 113, 3436 (2016).Google Scholar
Funamori, N., Yamamoto, S., Yagi, T., Kikegawa, T., J. Geophys. Res. 109, B03203 (2004).Google Scholar
Sanloup, C., Drewitt, J.W.E., Konôpková, Z., Dalladay-Simpson, P., Morton, D.M., Rai, N., van Westrenen, W., Morgenroth, W., Nature 503, 104 (2013).CrossRefGoogle Scholar
Madden, P.A., Wilson, M., Chem. Soc. Rev. 25, 339 (1996).Google Scholar
Gross, T.M., J. Non Cryst. Solids 358, 3445 (2012).Google Scholar
Yuan, F., Huang, L., Sci. Rep. 4, 5035 (2014).CrossRefGoogle Scholar
Yoshida, S., Sanglebœuf, J.-C., Rouxel, T., J. Mater. Res. 20, 3404 (2005).Google Scholar
Liang, Y., Miranda, C.R., Scandolo, S., Phys. Rev. B Condens. Matter 75, 024205 (2007).CrossRefGoogle Scholar
Zeidler, A., Wezka, K., Rowlands, R.F., Whittaker, D.A.J., Salmon, P.S., Polidori, A., Drewitt, J.W.E., Klotz, S., Fischer, H.E., Wilding, M.C., Bull, C.L., Tucker, M.G., Wilson, M., Phys. Rev. Lett. 113, 135501 (2014).Google Scholar
Meade, C.. Jeanloz, R, Science 241, 1072 (1988).Google Scholar
Aziz, M.J., Circone, S., Agee, C.B., Nature 390, 596 (1997).Google Scholar
Salmon, P.S., Nat. Mater. 1, 87 (2002).Google Scholar
Mauro, J.C., Tandia, A., Vargheese, K.D., Mauro, Y.Z., Smedskjaer, M.M., Chem. Mater. 28, 4267 (2016).CrossRefGoogle Scholar
Wakabayashi, D., Funamori, N., Sato, T., Phys. Rev. B Condens. Matter 91, 014106 (2015).Google Scholar
Gross, T.M., Tomozawa, M., J. Non Cryst. Solids 354, 5567 (2008).Google Scholar
Michalske, T.A., Freiman, S.W., Nature 295, 511 (1982).Google Scholar