Hostname: page-component-599cfd5f84-2stsh Total loading time: 0 Render date: 2025-01-07T06:04:09.945Z Has data issue: false hasContentIssue false

Field-Activated Electroactive Polymers

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Field-activated electroactive polymers (FEAPs) are a class of electroactive polymers that are insulating and exhibit coulombic interaction with and dipole formation in response to external electric signals. There are many polarization mechanisms in insulating polymers, from the molecular to the mesoscopic and even the macroscopic level, which couple strongly with mechanical deformation and can be used to create polymer actuators and sensors. FEAPs feature fast response speed limited by the polymer dielectric and elastic relaxation time, a very large strain level (to more than 100% strain), high electromechanical efficiency, the ability to operate down to micro/nanoelectromechanical devices, and a highly reproducible strain response under electric fields. One challenge in FEAP actuators and electromechanical devices is reducing the operation voltage to below 100 V or even 10 V while achieving an electromechanical conversion efficiency comparable with that of inorganic electroactive materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wang, T.T., Herbert, J.M., Glass, A.M., The Applications of Ferroelectric Polymers (Blackie and Son, New York, 1988).Google Scholar
2.Sessler, G.M., Electrets (Laplacian Press, ed. 3, vol. 1, 1998).Google Scholar
3.Xu, Yuhuan, Ferroelectric Materials and Their Applications (Elsevier Science, 1991).Google Scholar
4.Shkel, Y.M., Klingenberg, D.J., J. Appl. Phys. 83, 415 (1998).CrossRefGoogle Scholar
5.Newnham, R.E., Sundar, V., Yimmirun, R., Su, J., Zhang, Q.M., Ceram. Trans. 88, 15 (1998).Google Scholar
6.Landau, L.D., Lifshitz, E.M., Electrodynamics of Continuous Media (Pergamon, Oxford, 1970).Google Scholar
7.Pelrine, R., Kornbluh, R., Pei, Q., Joseph, J., Science 287, 836 (2000).CrossRefGoogle Scholar
8.Bauer, S., IEEE Trans. Dielectrics and Electrical Insulation 13, 953 (2006).CrossRefGoogle Scholar
9.Takase, Y., Lee, J.W., Scheinbeim, J.I., Newman, B.A., Macromolecules 24, 6644 (1991).CrossRefGoogle Scholar
10.Su, J., Ma, Z.Y., Scheinbeim, J.I., Newman, B.A., J. Polym. Sci. B 33, 85 (1995).CrossRefGoogle Scholar
11.Gao, Q., Scheinbeim, J.I., Newman, B.A., Macromolecules 33, 7564 (2000).CrossRefGoogle Scholar
12.Lovinger, A.J., Davis, G.T., Furukawa, T., Broadhurst, M.G., Macromolecules 15, 323 (1982).CrossRefGoogle Scholar
13.Lovinger, A.J., Developments in Crystalline Polymers-1, Bassett, D.C., Ed., 195 (Applied Science Publishers, London, 1982).CrossRefGoogle Scholar
14.Lovinger, A.J., Furukawa, T., Ferroelectrics 50, 227 (1983).CrossRefGoogle Scholar
15.Zhang, Q.M., Zhao, J., Shrout, T., Kim, N., Cross, L.E., Amin, A., Kulwicki, B.M., J. Appl. Phys. 77, 2549 (1995).CrossRefGoogle Scholar
16.Huang, C., Klein, R., Xia, F., Li, H.F., Zhang, Q.M., Bauer, F., Cheng, Z.-Y., IEEE Trans. Dielectrics and Electrical Insulation 11, 299 (2004).CrossRefGoogle Scholar
17.Zhang, Q.M., Bharti, V., Zhao, X., Science 280, 2101 (1998).CrossRefGoogle Scholar
18.Cheng, Z.-Y., Xu, T.-B., Bharti, V., Wang, S., Zhang, Q.M., Appl. Phys. Lett. 74, 1901 (1999).CrossRefGoogle Scholar
19.Guo, S., Zhao, X.-Z., Zhuo, Q., Chan, H.L.W., Choy, C.L., Appl. Phys. Lett. 84, 3349 (2004).CrossRefGoogle Scholar
20.Xia, F., Cheng, Z.-Y., Xu, H., Li, H., Zhang, Q.M., Kavarnos, G., Ting, R., Abdul-Sedat, G., Belfield, K.D., Adv. Mater. 14, 1574 (2002).3.0.CO;2-#>CrossRefGoogle Scholar
21.Xu, H., Cheng, Z.-Y., Olson, D., Mai, T., Zhang, Q.M., Kavarnos, G., Appl. Phys. Lett. 78, 2360 (2001).CrossRefGoogle Scholar
22.Carrett, J.T., Roland, C.M., Petchsuk, A., Chung, T.C., Appl. Phys. Lett. 83, 1190 (2003).Google Scholar
23.Cheng, Z.-Y., Katiyar, R.S., Yao, X., Bhalla, A.S., Phys. Rev. B 57, 8166 (1998).CrossRefGoogle Scholar
24.Cheng, Z.-Y., Zhang, Q.M., Bateman, F.B., J. Appl. Phys. 92, 6749 (2002).CrossRefGoogle Scholar
25.Cheng, Z.-Y., Olson, D., Xu, H.S., Xia, F., Hundal, J.S., Zhang, Q.M., Bateman, F.B., Kavarnos, G.J., Ramotowski, T., Macromolecules 35, 664 (2002).CrossRefGoogle Scholar
26.Li, Z.M., Arbatti, M.D., Cheng, Z.-Y., Macromolecules 37, 79 (2004).CrossRefGoogle Scholar
27.Li, Z.M., Li, S.Q., Cheng, Z.-Y., J. Appl. Phys. 97, 014102 (2005).CrossRefGoogle Scholar
28.Jayasuriya, A.C., Schirokauer, A., Scheinbeim, J.I., J. Polym. Sci., Part B: Polym. Phys. 39, 2793 (2001).CrossRefGoogle Scholar
29.Wegener, M., Hesse, J., Richter, K., Gerhard-Multhaupt, R., J. Appl. Phys. 92, 7442 (2002).CrossRefGoogle Scholar
30.Neese, B., Wang, Y., Chu, B.J., Ren, K.L., Liu, S., Zhang, Q.M., Huang, C., West, J., Appl. Phys. Lett. 90, 242917 (2007).CrossRefGoogle Scholar
31.Li, Z.M., Wang, Y.H., Cheng, Z.-Y., Appl. Phys. Lett. 88, 062904 (2006).CrossRefGoogle Scholar
32.Klein, R., Xia, F., Zhang, Q.M., Bauer, F., J. Appl. Phys. 97, 094105 (2005).CrossRefGoogle Scholar
33.Su, J., Harrison, J.S., Clair, T.L.St., “Elec -trostrictive graft elastomers,” U.S. Patent 6,515,077 (February 4, 2003).Google Scholar
34.Lehmann, W., Skupin, H., Tolksdorf, C., Gebhard, E., Zentel, R., Krüger, P., Lösche, M., Kremer, F., Nature 410, 447 (2001).CrossRefGoogle Scholar
35.Huang, C., Zhang, Q.M., Jákli, A., Adv. Funct. Mater. 13, 525 (2003).CrossRefGoogle Scholar
36.Zhenyi, M., Scheinbeim, J.I., Lee, J., Newman, B.A., J. Polym. Sci., Part B: Polym. Phys. 32, 2721 (1994).CrossRefGoogle Scholar
37.Kofod, G., Sommer-Larsen, P., Kornbluh, R., Pelrine, R., J. Intell. Mater. Syst. Struct. 14, 787 (2003).CrossRefGoogle Scholar
38.Li, Z.M., Cheng, Z.-Y., Proc. SPIE 5759, 252 (2005).CrossRefGoogle Scholar
39.Zhao, Z., Suo, Z., Appl. Phys. Lett. 91, 061921 (2007).CrossRefGoogle Scholar
40.Kofod, G., Wirges, W., Paajanen, M., Bauer, S., Appl. Phys. Lett. 90, 081916 (2007).CrossRefGoogle Scholar
41.Zhang, Q.M., Li, H.F., Poh, M., Xu, H.S., Cheng, Z.-Y., Xia, F., Huang, C., Nature 419, 284 (2002).CrossRefGoogle Scholar
42.Eguchi, M., Philos. Mag. 49, 178 (1925).CrossRefGoogle Scholar
43.Bauer, S., Gerhard-Multhaupt, R., Sessler, G., Phys. Today 57, 37 (2004).CrossRefGoogle Scholar
44.Zhang, X., Hillenbrand, J., Sessler, G.M., J. Phys. D: Appl. Phys. 37, 2146 (2004).CrossRefGoogle Scholar
45.Paajanen, M., Lekkala, J., Kirjavanen, K., Sens. Actuators A 84, 95 (2000).CrossRefGoogle Scholar
46.Sessler, G.M., Hillenbrand, J., Appl. Phys. Lett. 75, 3405 (1999).CrossRefGoogle Scholar
47.Wireges, W., Wagener, M., Voronina, O., Zirkel, L., Gerhard-Multhaupt, R., Adv. Funct. Mater. 17, 324 (2007).CrossRefGoogle Scholar
48.Cheng, Z.-Y., Bharti, V., Xu, T.-B., Xu, H., Mai, T., and Zhang, Q.M., Sens. Actuators, A 90, 138 (2001).CrossRefGoogle Scholar
49.Xu, T.B., Cheng, Z.-Y., Zhang, Q.M., Appl. Phys. Lett. 80, 1082 (2002).CrossRefGoogle Scholar
50.Strachan, A., Goddard, W.A. III, Appl. Phys. Lett. 86, 083103 (2005).CrossRefGoogle Scholar
51.Graz, I., Kaltenbrunner, M., Keplinger, C., Schwodiauer, R., Bauer, S., Lacour, S.P., Wagner, S., Appl. Phys. Lett. 89, 073501 (2006).CrossRefGoogle Scholar
52.Kimura, K., Ohigashi, H., Appl. Phys. Lett. 43, 834 (1983).CrossRefGoogle Scholar
53.Zhang, Q.M., Xu, H.S., Fang, F., Cheng, Z.-Y., Feng, X., You, H., J. Appl. Phys. 89, 2613 (2001).CrossRefGoogle Scholar
54.Urayama, K., Tsuji, M., Neher, D., Macromolecules 33, 8269 (2000).CrossRefGoogle Scholar
55.Nakajima, T., Abe, R., Takahashi, Y., Furukawa, T., Jpn. J. Appl. Phys. 44, L1385 (2005).CrossRefGoogle Scholar
56.Park, Y.J., Kang, S.J., Park, C., Kim, K.J., Lee, H.S., Lee, M.S., Chung, U.I., Park, I.J., Appl. Phys. Lett. 88, 242908 (2006).CrossRefGoogle Scholar
57.Bune, A., Fridkin, V., Ducharme, S., Blinov, L., Palto, S., Sorokin, A., Yudin, S., Zlatkin, A., Nature 391, 874 (1998).CrossRefGoogle Scholar
58.Ducharme, S., Fridkin, V., Bune, A., Palto, S., Blinov, L., Petukhova, N., Yudin, S., Phys. Rev. Lett. 84, 175 (2000).CrossRefGoogle Scholar
59.Bune, A., Zhu, C., Ducharme, S., Blinov, L., Fridkin, V., Palto, S., Petukhova, N., Yudin, S., J. Appl. Phys. 85, 7869 (1999).CrossRefGoogle Scholar
60.Manohara, H.M., Morikawa, E., Choi, J.W., Sprunger, P.T., JMEMS 8, 417 (1999).Google Scholar
61.Hu, Z.J., Baralia, G., Bayot, V., Gohy, J.F., Jonas, A.M., Nano Lett. 5, 1738 (2005).CrossRefGoogle Scholar
62.Kang, S.J., Park, Y.J., Hwang, J.Y., Jeong, H.J., Lee, J.S., Kim, K.J., Kim, H.C., Huh, J., Park, C., Adv. Mater. 19, 581 (2007).CrossRefGoogle Scholar
63.Steinhart, M., Wendorff, J.H., Greiner, A., Wehrspohn, R.B., Nielsch, K., Schiling, J., Choi, J., Gosele, U., Science 296, 1997 (2002).CrossRefGoogle Scholar
64.Steinhart, M., Senz, S., Wehrspohn, R.B., Gosele, U., Wendorff, J.H., Macromolecules 36, 3646 (2003).CrossRefGoogle Scholar
65.Lau, S.T., Zheng, R.K., Chan, H.L.W., Choy, C.L., Mater. Lett. 60, 2357 (2006).CrossRefGoogle Scholar
66.Li, D., Xia, Y., Adv. Mater. 16, 1151 (2004).CrossRefGoogle Scholar