Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T03:12:25.877Z Has data issue: false hasContentIssue false

Cryo-electron microscopy instrumentation and techniques for life sciences and materials science

Published online by Cambridge University Press:  10 December 2019

Robert E.A. Williams
Affiliation:
Center for Electron Microscopy and Analysis, The Ohio State University, USA; [email protected]
David W. McComb
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, USA; [email protected]
Sriram Subramaniam
Affiliation:
Department of Biochemistry and Molecular Biology, The University of British Columbia, Canada; [email protected]
Get access

Abstract

In this article, we review some of the recent developments in instrumentation and methods that have led to the rise of cryo-electron microscopy (cryo-EM) in the life sciences community, and consider how researchers in the materials community might benefit from these advances. Transmission electron microscopy (TEM) is compared with scanning transmission electron microscopy (STEM) for cryogenic imaging in both biological and materials science applications. We discuss the developments in detector technologies that have in part powered the development of cryo-EM and anticipate exciting areas for productive overlap between life science and materials science cryo-EM applications.

Type
Cryogenic Electron Microscopy in Materials Science
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Henderson, R., Q Rev Biophys. 28, 2 (1995).CrossRefGoogle Scholar
Hayward, S.B., M Glaeser, R., Ultramicroscopy 4 (2), 201 (1979).CrossRefGoogle Scholar
Li, X., Mooney, P., Zheng, S., Booth, C.R., Braunfeld, M.B., Gubbens, S., Agard, D.A., Cheng, Y., Nat. Methods. 6, 584 (2013).CrossRefGoogle Scholar
Frank, J., Angew Chem. Int. Ed. Engl. 57, 34 (2018).CrossRefGoogle Scholar
Bartesaghi, A., Merk, A., Banerjee, S., Matthies, D., Wu, X., Milne, J.L., Subramaniam, S., Science 348, 1147 (2015).CrossRefGoogle Scholar
Sousa, A.A., Leapman, R.D., Ultramicroscopy 123, 38 (2012).CrossRefGoogle Scholar
Wolf, S., Elbaum, M., in Methods in Cell Biology, Müller-Reichert, T., Pigino, G., Eds., (Academic Press, Cambridge, MA, 2019), vol. 152, p. 197.Google Scholar
Pennycook, S.J., Nellist, P.D., Eds., Scanning Transmission Electron Microscopy Imaging and Analysis (Springer, New York, 2011).CrossRefGoogle Scholar
Savitzky, B.H., El Baggari, I., Clement, C.B., Waite, E., Goodge, B.H., Baek, D.J., Sheckelton, J.P., Pasco, C., Nair, H., Schreiber, N.J., Hoffman, J., Admasu, A.S., Kim, J., Cheong, S.-W., Bhattacharya, A., Schlom, D.G., McQueen, T.M., Hovden, R., Kourkoutis, L.F., Ultramicroscopy 191, 56 (2018).CrossRefGoogle Scholar
Goodge, B.H., Bianco, E., Zandbergen, H.W., Kourkoutis, L.F., Microsc. Microanal. 25, 930 (2019).CrossRefGoogle Scholar
Minor, A.M., Denes, P., Muller, D.A., MRS Bull. 44 (12), 961 (2019).CrossRefGoogle Scholar
Homo, J.C., Booy, F., Labouesse, P., Lepault, J., Dubochet, J., J. Microsc. 136, 337 (2011).CrossRefGoogle Scholar
Tate, M.W., Purohit, P., Chamberlain, D., Nguyen, K.X., Microsc. Microanal. 22, 237 (2016).CrossRefGoogle Scholar
Jiang, Y., Chen, Z., Han, Y., Deb, P., Gao, H., Xie, S., Purohit, P., Tate, M.W., Park, J., Gruner, S.M., Elser, V., Muller, D.A., Nature 559, 343 (2018).CrossRefGoogle Scholar
Courtland, R., Nature 563, 462 (2018).CrossRefGoogle Scholar