Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T20:03:15.408Z Has data issue: false hasContentIssue false

Cantilever Sensors: Nanomechanical Tools for Diagnostics

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Cantilever sensors have attracted considerable attention over the last decade because of their potential as a highly sensitive sensor platform for high throughput and multiplexed detection of proteins and nucleic acids. A micromachined cantilever platform integrates nanoscale science and microfabrication technology for the label-free detection of biological molecules, allowing miniaturization. Molecular adsorption, when restricted to a single side of a deformable cantilever beam, results in measurable bending of the cantilever. This nanoscale deflection is caused by a variation in the cantilever surface stress due to biomolecular interactions and can be measured by optical or electrical means, thereby reporting on the presence of biomolecules. Biological specificity in detection is typically achieved by immobilizing selective receptors or probe molecules on one side of the cantilever using surface functionalization processes. When target molecules are injected into the fluid bathing the cantilever, the cantilever bends as a function of the number of molecules bound to the probe molecules on its surface. Mass-produced, miniature silicon and silicon nitride microcantilever arrays offer a clear path to the development of miniature sensors with unprecedented sensitivity for biodetection applications, such as toxin detection, DNA hybridization, and selective detection of pathogens through immunological techniques. This article discusses applications of cantilever sensors in cancer diagnosis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Thundat, T., Oden, P.I., Warmack, R.J., Microscale Thermophys. Eng. 1, 185 (1997).CrossRefGoogle Scholar
2Thundat, T., Warmack, R.J., Chen, G.Y., Allison, D.P., Appl. Phys. Lett. 64, 2894 (1994).CrossRefGoogle Scholar
3Lee, P.-S., Lee, J., Shin, N., Lee, K.-H., Lee, D., Jeon, S., Choi, D., Hwang, W., Park, H., Adv. Mater. 20, 1732 (2008).CrossRefGoogle Scholar
4Oden, P.I., Chen, G.Y., Steele, R.A., Warmack, R.J., Thundat, T., Appl. Phys. Lett. 68, 3814 (1996).CrossRefGoogle Scholar
5Burg, T.P., Godin, M., Knudsen, S.M., Shen, W., Carlson, G., Foster, J.S., Babcock, K., Manalis, S.R., Nature 446, 1066 (2007).CrossRefGoogle Scholar
6Raiteri, R., Butt, H.-J., J. Phys. Chem. 99, 15728 (1995).CrossRefGoogle Scholar
7Raiteri, R., Butt, H.-J., Grattarola, M., Electorchim. Acta. 46, 157 (2000).CrossRefGoogle Scholar
8Haiss, W., Rep. Prog. Phys. 64, 591 (2001).CrossRefGoogle Scholar
9Meyer, G., Amer, N.M., Appl. Phys. Lett. 53, 1045 (1988).CrossRefGoogle Scholar
10Boisen, A., Thaysen, J., Jensenius, H., Hansen, O., Ultramicroscopy 82, 11 (2000).CrossRefGoogle Scholar
11Lee, S.S., White, R.M., Sens. Actuators A 52, 41 (1996).CrossRefGoogle Scholar
12Lee, J.H., Yoon, K.H., Kim, T.S., Integr. Ferroelectr. 50, 43 (2002).CrossRefGoogle Scholar
13Shekhawat, G., Tark, S.-H., Dravid, V.P., Science 311, 1592 (2006).CrossRefGoogle Scholar
14Britton, C.L. Jr., Jones, R.L., Oden, P.I., Hu, Z., Warmack, R.J., Smith, S.F., Bryan, W.L., Rochelle, J.M., Ultramicroscopy 82, 17 (2000).CrossRefGoogle Scholar
15Binnig, G., Quate, C.F., Gerber, C., Phys. Rev. Lett. 56, 930 (1986).CrossRefGoogle Scholar
16Lavrik, N.V., Sepaniak, M.J., Datskos, P.G., Rev. Sci. Instrum. 75, 2229 (2004).CrossRefGoogle Scholar
17Rasmussen, P.A., Thaysen, J., Hensen, O., Eriksen, S.C., Boisen, A., Ultramicroscopy, 97, 371 (2002).CrossRefGoogle Scholar
18Choudhury, A., A Piezoresistive Microcantilever Array for Chemical Sensing Applications. Mechanical Engineering. PhD diss., Georgia Institute of Technology, 2007.Google Scholar
19Fritz, J., Baller, M.K., Lang, H.P., Rothuizen, H., Vettiger, P., Meyer, E., Güntherodt, H.-J., Gerber, Ch., Gimzeski, J.K., Science 288, 316 (2000).CrossRefGoogle Scholar
20Hansen, K.M., Ji, H.-F., Wu, G., Datar, R., Cote, R., Majumdar, A., Thundat, T., Anal. Chem. 73, 1567 (2001).CrossRefGoogle Scholar
21Wu, G., Datar, R.H., Hansen, K.M., Thundat, T., Cote, R., Majumdar, A., Nature Biotechnol. 19, 856 (2001).CrossRefGoogle Scholar
22Wu, G., Ji, H., Hansen, K.M., Thundat, T., Datar, R., Cote, R., Hagan, M.F., Chakraborty, A.K., Majumdar, A., Proc. Natl. Acad. Sci. U.S.A. 98, 1560 (2001).CrossRefGoogle Scholar
23McKendry, R., Zhang, J., Arntz, Y., Strunz, T., Hegner, M., Lang, H.P., Baller, M.K., Certa, U., Meyer, E., Güntherodt, H.-J., Gerber, Ch., Proc. Natl. Acad. Sci. U.S.A. 99, 9783 (2002).CrossRefGoogle Scholar
24Arntz, Y., Seelig, J.D., Lang, H.P., Zhang, J., Hunziker, P., Ramseyer, J.P., Meyer, E., Hegner, M., Ch. Gerber, Nanotechnology 14, 86 (2003).CrossRefGoogle Scholar
25Zhang, J., Lang, H.P., Huber, F., Bietsch, A., Grange, W., Certa, U., McKendry, R., Güntherodt, H.-J., Hegner, M., Gerber, Ch., Nature Nanotechnol. 1, 214 (2006).CrossRefGoogle Scholar
26Yue, M., Stachowiak, J.C., Lin, H., Datar, R., Cote, R., Majumdar, A., Nano. Lett. 8, 520 (2008).CrossRefGoogle Scholar
27Mertens, J., Rogero, C., Calleja, M., Ramos, D., Martin-Gago, J.A., Briones, C., Tamayo, J., Nature Nanotechnol. 3, 301 (2008).CrossRefGoogle Scholar
28Rasmussen, P.A., Thaysen, J., Hansen, O., Eriksen, S.C., Boisen, A., Ultramicroscopy 97, 371 (2003).CrossRefGoogle Scholar
29Godin, M., Williams, P.J., Tabard-Cossa, V., Laroche, O., Beaulieu, L.Y., Lennox, R.B., Grütter, P., Langmuir 20, 7090 (2004).CrossRefGoogle Scholar
30Tabard-Cossa, V., Godin, M., Burgess, I.J., Monga, T., Lennox, R.B., Grütter, P., Anal. Chem. 79, 8136 (2007).CrossRefGoogle Scholar