Hostname: page-component-7bb8b95d7b-5mhkq Total loading time: 0 Render date: 2024-10-01T05:57:16.348Z Has data issue: false hasContentIssue false

Transparent Ag-Free OLED Fabricated by OVPD Using Thin Au Contacts

Published online by Cambridge University Press:  24 February 2016

P. Pfeiffer
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
D. Stümmler
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
S. Loginkin
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
M. Heuken
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany AIXTRON SE, Dornkaulstraße 2, 52134 Herzogenrath, Germany
A. Vescan
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
H. Kalisch*
Affiliation:
Device Technology, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen, Germany
*
Get access

Abstract

We demonstrate Ag-free transparent OLED (TOLED) fabricated by organic vapor phase deposition (OVPD) using thin Au contacts. Three types of TOLED devices have been studied. The first one has been deposited on ITO substrates to compare thin Ag and Au films as top cathodes. A 6-fold increase in operational lifetime (LT50, 4 mA/cm2) from 27 h to 172 h can be observed when replacing Ag by Au while maintaining similar electro-optical characteristics. Furthermore, a second type of TOLED on thin Au films, replacing ITO and suppressing laterally guided modes [1], has been studied. TOLED on ITO substrates and on thin Au films exhibit very low onset voltages of 2.2 V. Both types show about 30% transparency in the VIS light region and emit orange light with a peak wavelength of 608 nm from either side with a total EQE of about 9% (measured at 1000 cd/m2 in sum). The third type of TOLED was fabricated with an inverted structure, with the aim to further increase operational lifetime by burying the reactive LiF/Al electron injection layer (EIL). This will make the EIL less accessible for oxygen and moisture. Our results show difficulties in electron injection when depositing the organic stack on Al/LiF, which may be attributed to an insufficient thermal activation of the EIL.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Slawinski, M., Brast, M., Zhang, X. D., Merget, F., Witzens, J., Heuken, M., Vescan, A. and Kalisch, H., MRS Proceedings 1627 (2014).Google Scholar
Gustafsson, G., Cao, Y., Treacy, G. M., Klavetter, F., Colaneri, N. and Heeger, A. J., Letters to Nature 357 (1992)CrossRefGoogle Scholar
Wu, C. C., Theiss, S. D., Gu, G., Lu, M. H., Sturm, J. C., Wagner, S. and Forrest, S. R., Electron Device Letters IEEE 18, 609612 (1997)Google Scholar
Uchida, T., Shibasaki, M., Matsuzaki, T. and Nagata, Y., Applied Physics Express 6, 041604 (2013)Google Scholar
Gu, G., Bulovíc, V., Burrows, P. E., Forrest, S. R. and Thompson, M. E., Applied Physics Letters 68, 2606 (1996)Google Scholar
Gu, G., Parthasarathy, G. and Forrest, S. R., Applied Physics Letters 74, 305 (1999)Google Scholar
Song, W., So, S. K., Moulder, J., Qiu, Y., Zhu, Y. and Cao, L., Surface and Interface Analysis 32, 7073 (2001)CrossRefGoogle Scholar
Wang, X. Z., Xie, Z. T., Wang, X. J., Zhou, Y. C., Zhang, W. H., Ding, X. M. and Hou, X. Y., Applied Surface Science 253, 39303932 (2007)Google Scholar
Yook, K. S., Jeon, S. O., Joo, C. W. and Lee, J. Y., Applied Physics Letters 93, 013301 (2008)CrossRefGoogle Scholar
Vaufrey, D., Khalifa, M. B., Besland, M.-P., Tardy, J., Sandu, C., Blanchin, M.-G. and Roger, J.-A., Materials Science and Engineering C 21, 265271 (2002)CrossRefGoogle Scholar
Dobbertin, T., Werner, O., Meyer, J., Kammoun, A., Schneider, D., Riedl, T., Becker, E., Johannes, H.-H. and Kowalsky, W., Applied Physics Letters 83, 5071 (2003)Google Scholar
Parthasarathy, G., Burrows, P. E., Khalfin, V., Kozlov, V. G. and Forrest, S. R., Applied Physics Letters 72, 2138 (1998)Google Scholar
Lindla, F., Boesing, M., Zimmermann, C., Jessen, F., van Gemmern, P., Bertram, D., Keiper, D., Meyer, N., Heuken, M., Kalisch, H. and Jansen, R.H., Applied Physics Letters 95, 213305 (2009)Google Scholar
Mason, M. G., Tang, C. W., Hung, L.-S., Raychaudhuri, P., Madathil, J., Giesen, D. J., Yan, L., Le, Q. T., Gao, Y., Lee, S.-T., Liao, L. S., Cheng, L. F., Salaneck, W. R., dos Santos, D. A. and Brédas, J.L., Journal of Applied Physics 89, 2756 (2001)CrossRefGoogle Scholar
Kim, Y. S., Park, J. H., Choi, D. H., Jang, H. S., Lee, J. H., Park, H. J., Choi, J. I., Ju, D. H., Lee, J. Y. and Kim, D., Applied Surface Science 254, 15241527 (2007)CrossRefGoogle Scholar
Fahland, M., in: Brabec, C., Dyakonov, V., Scherfeds, U. (Eds.), Organic Photovoltaics, Wiley-VCH, Weinheim, 2008 Google Scholar