Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T19:00:18.200Z Has data issue: false hasContentIssue false

Anomalous Reverse Breakdown of CIGS Devices: Theory and Simulation

Published online by Cambridge University Press:  11 May 2017

Marco Nardone*
Affiliation:
Bowling Green State University, E Wooster Street, Bowling Green, OH, 43403, U.S.A
Saroj Dahal
Affiliation:
Bowling Green State University, E Wooster Street, Bowling Green, OH, 43403, U.S.A
*
Get access

Abstract

Copper indium gallium selenium (CIGS) photovoltaic (PV) devices exhibit unique reverse breakdown characteristics in terms of the dependence on temperature, light intensity, photon energy, and buffer layer material. In this work, the theoretical basis of potential reverse breakdown mechanisms are described and compared to available data. Quantitative analysis performed with semiconductor device simulation indicates that none of the conventional reverse breakdown mechanisms can account for the observations. Further work to better understand the reverse current-voltage characteristics of CIGS PV devices will provide insight to improve performance and reliability.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kozinsky, I., Bob, B., and Jones-Albertus, R., MRS Adv. FirstView, 1 (2016).Google Scholar
Westin, P.-O., Zimmermann, U., Stolt, L., and Edoff, M., in 24th Eur. Photovolt. Sol. Energy Conf. 21-25 Sept. 2009 Hambg. Ger. (WIP-Renewable Energies, 2009), pp. 29672970.Google Scholar
Silverman, T. J., Deceglie, M. G., Deline, C., and Kurtz, S., in SPIE Opt. Photonics Sustain. Energy (International Society for Optics and Photonics, 2015), p. 95630F95630F.Google Scholar
Silverman, T. J., Deceglie, M. G., Sun, X., Garris, R. L., Alam, M. A., Deline, C., and Kurtz, S., Photovolt. IEEE J. Of 5, 1742 (2015).Google Scholar
Lee, J. E., Bae, S., Oh, W., Park, H., Kim, S. M., Lee, D., Nam, J., Mo, C. B., Kim, D., Yang, J., Kang, Y., Lee, H., and Kim, D., Prog. Photovolt. Res. Appl. 24, 8 (2016).Google Scholar
Nardone, M., Dahal, S., and Waddle, J. M., Sol. Energy 139, 381 (2016).CrossRefGoogle Scholar
Puttnins, S., Jander, S., Wehrmann, A., Benndorf, G., Stölzel, M., Müller, A., von Wenckstern, H., Daume, F., Rahm, A., and Grundmann, M., Sol. Energy Mater. Sol. Cells 120, 506 (2014).CrossRefGoogle Scholar
Mack, P., Walter, T., Kniese, R., Hariskos, D., and Schäffler, R., in 23rd Eur. Photovolt. Sol. Energy Conf. Exhib. (2008), pp. 21562159.Google Scholar
Szaniawski, P., Lindahl, J., Törndahl, T., Zimmermann, U., and Edoff, M., Thin Solid Films 535, 326 (2013).Google Scholar
Sun, X., Raguse, J., Garris, R., Deline, C., Silverman, T., and Alam, M. A., in Photovolt. Spec. Conf. PVSC 2015 IEEE 42nd (IEEE, 2015), pp. 16.Google Scholar
Sze, S. M. and Ng, K. K., Physics of Semiconductor Devices (John wiley & sons, 2006).Google Scholar
Vincent, G., Chantre, A., and Bois, D., J. Appl. Phys. 50, 5484 (1979).CrossRefGoogle Scholar
Frenkel, J., Phys. Rev. 54, 647 (1938).Google Scholar
Lui, O. K. B. and Migliorato, P., Solid-State Electron. 41, 575 (1997).CrossRefGoogle Scholar
Hurkx, G. A. M., Klaassen, D. B. M., and Knuvers, M. P. G., Electron Devices IEEE Trans. On 39, 331 (1992).Google Scholar
Rau, U., Appl. Phys. Lett. 74, 111 (1999).CrossRefGoogle Scholar
Gloeckler, M., Fahrenbruch, A. L., and Sites, J. R., in Photovolt. Energy Convers. 2003 Proc. 3rd World Conf. On (IEEE, 2003), pp. 491494.Google Scholar