Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T06:20:05.711Z Has data issue: false hasContentIssue false

Crystal-chemical study of Rc natural oxides along the eskolaite – karelianite – hematite (Cr2O3–V2O3–Fe2O3) join

Published online by Cambridge University Press:  05 July 2018

L. Secco*
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Giotto 1, I-35137, Padova, Italy
F. Nestola
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Giotto 1, I-35137, Padova, Italy Istituto di Geoscienze e Georisorse, CNR Sezione di Padova, Via Giotto 1, I-35137 Padova, Italy
A. Dal Negro
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Giotto 1, I-35137, Padova, Italy
L. Z. Reznitsky
Affiliation:
The Siberian Division of Russian Academy of Sciences, Institute of the Earth’s Crust, Irkutsk, 664033 Russia
*

Abstract

Six natural crystals from the Sludyanka crystalline complex belonging to the eskolaite (Cr2O3)–karelianite (V2O3)–hematite (Fe2O3) solid solution were studied by means of X-ray diffraction and electron microprobe. The Fe3+-poor samples show a general increase in a and c cell parameters with increasing mean cationic radius (MCR), consistent with that shown by the synthetic crystals along the eskolaite–karelianite join. The Fe3+-richer sample deviates significantly from the behaviour shown by the Fe3+-poor ones, similar to synthetic and natural hematites; with increasing MCR, the a and c cell parameters increase linearly along the eskolaite-karelianite join. However, for the samples rich in Fe3+, from karelianite to hematite, a shows a slightly steeper slope whereas the c parameter decreases strongly. The octahedral distortion increases slightly as a function of MCR along the eskolaite-karelianite join, whereas it increases markedly for Fe3+-rich samples. The evolution of the octahedral edges and of the octahedral distortions as a function of MCR are responsible for the behaviour of the unit-cell parameters along the eskolaite-karelianite-hematite join.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balic-Zunic, T. and Vickovic, I. (1996) IVTON -program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. Journal of Applied Crystallography, 29, 305306.CrossRefGoogle Scholar
Belokoneva, E.L. and Shcherbakova, Y.K. (2003) Electron density in synthetic escolaite Cr2O3 with a corundum structure and its relation to antiferromag-netic properties. Russian Journal of Inorganic Chemistry, 48, 861869.Google Scholar
Blake, R.L., Hessevick, R.E. and Finger, L.W. (1966) Refinement of the hematite structure. American Mineralogist, 51, 123129.Google Scholar
Finger, L.W. and Hazen, R.M. (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3 and V2O3 to 50 kbars. Journal of Applied Physics, 51, 53625367.CrossRefGoogle Scholar
Hague, C.F., Mariot, J.M., Ilakovac, V., Delaunay, R., Marsi, M., Sacchi, M., Rueff, J.P. and Felsch, W. (2008) Charge transfer at the metal-insulator transition in V2O3 thin films by resonant inelastic X-ray scattering. Physical Review, B77, #045132.Google Scholar
Hazen, R.M. and Finger, L.W. (1982) Comparative Crystal Chemistry. Wiley, New York.Google Scholar
Ibers, J.A. and Hamilton, W.C. (Eds.) (1974) International Tables for X-ray Crystallography. Vol. 4, 99101. Kynoch Press, Birmingham, UK.Google Scholar
Kelm, K. and Mader, W. (2005) Synthesis and structural analysis of £-Fe2O3 . Zeitschrift fur anorganische und allgemeine Chemie, 631, 23832389.CrossRefGoogle Scholar
Koneva, A.A. (2002) Cr-V oxides in metamorphic rocks, Lake Baikal, Russia. Neues Jahrbuch fur Mineralogie, 12, 541550.CrossRefGoogle Scholar
Koneva, A.A., Reznitsky, L.Z., Feoktistov, G.D., Sapozhnikov, A.N., Koneva, A.A., Sklyarov, E.V., Vorob'ev, E.I., Ivanov, V.G. and Ushapovskaya, Z.F. (2001) Mineralogy in Eastern Siberia: State of the Art on the Threshold of XXI Century. New and Rare-occurring Minerals. (Konev, A.A., editor). Intermet Engineering, Moscow. 240 pp.Google Scholar
Kouvo, O. and Vuorelainen, Y. (1958) Eskolaite, a new chromium mineral. American Mineralogist, 43, 10981106.Google Scholar
Krishna, G.M., Gandhi, Y., Venkatramaiah, N., Venkatesan, R. and Veerajah, N. (2008) Features of the local structural disorder in Li2O-CaF2-P2O5glass-ceramics with Cr2O3 as nucleating agent. Physica B - Condensed Matter, 403, 702710.CrossRefGoogle Scholar
Logvinova, A., Wirth, R., Sobolev, N.V., Seryotkin, Y.V., Yefimova, E.S., Floss, C. and Taylor, L.A. (2008) Eskolaite associated with diamond from the Udachnaya kimberlite pipe, Yakutia, Russia. American Mineralogist, 93, 685690.CrossRefGoogle Scholar
Long, J.V.P., Vuorelainen, Y. and Kouvo, O. (1963) Karelianite, a new vanadium mineral. American Mineralogist, 48, 3341.Google Scholar
Newnham, R.E. and de Haan, Y.M. (1962) Refinement of the a-Al2O3, Ti2O3, V2O3 and Cr2O3 structures. Zeitschrift fur Kristallographie, 117, 235237.CrossRefGoogle Scholar
Oyama, T., Iimura, Y., Takeuchi, K. and Ishii, T. (1999) Synthesis of (CreVl-* )2O3 fine particles by a laser-induced vapor-phase reaction and their crystal structure. Journal of Materials Science, 34, 439444.CrossRefGoogle Scholar
Pauling, L. and Hendricks, B. (1925) The crystal structures of hematite and corundum. Journal of the American Chemical Society, 47, 781790.CrossRefGoogle Scholar
Reid, A.F., Sabine, T.M. and Wheeler, D.A. (1972) Neutron diffraction and other studies of magnetic ordering in phases based on Cr2O3, V2O3 and Ti2O3 . Journal of Solid State Chemistry, 4, 400409.CrossRefGoogle Scholar
Reznitsky, L.Z. and Sklyarov, E.V. (1996) Unique Cr-V mineral association in metacarbonate rocks of the Sludyanka, Russia. Proceedings of the 30th International Geological Congress, Beijing, China, Vol. 2, 446 p.Google Scholar
Reznitsky, L.Z., Sklyarov, E.V. and Karmanov, N.S. (1998) Eskolaite in metacarbonate rocks of the Sludyanka Group, southern Baikal region. Doklady Earth Sciences, 363, 10491053.Google Scholar
Reznitsky, L.Z., Sklyarov, E.V., Suvorova, L.F., Karmanov, N.S. and Ushchapovskaya, Z.F. (2005) The chromite-coulsonite-magnetite solid solution: the first find of a rare variety of spinel in terrestrial rocks. Doklady Earth Sciences, 404, 11211125.Google Scholar
Robinson, W.R. (1975) High-temperature crystal chemistry of V2O3 and 1% chromium-doped V2 O3 . Ada Crystallographica, B31, 11531160.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Sawada, H. (1994) Residual electron density study of chromium sesquioxide by crystal structure and scattering factor refinement. Materials Research Bulletin, 29, 239245.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Ada Crystallographica. A32, 751767.Google Scholar
Sheldrick, G.M. (1997) SHELX: programs for crystal structure analysis (Release 97–2). Instit¨t fur Anorganische Chemie der Universitat, Tammanstrasse 4, D-3400 Gottingen, Germany.Google Scholar
Stoe, and Cie, (1999) Crystal Optimisation for Numerical Absorption Correction. Stoe and Cie GmbH, Darmstadt, Germany.Google Scholar
Stoe, and Cie, (2001) Data Reduction Program. Stoe and Cie GmbH, Darmstadt, Germany.Google Scholar