Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-12-01T09:17:05.519Z Has data issue: false hasContentIssue false

Pyrophanite from Chvaletice (Bohemia)

Published online by Cambridge University Press:  05 July 2018

L. Žák*
Affiliation:
Department of mineralogy, geochemistry, and crystallography, Charles University, Prague, Czechoslovakia

Summary

Pyrophanite was found in quartz-rhodochrosite veins in hornstones of Algonkian pyritemanganese ores. Photometric reflectance falls from R0 24 and RE′ 19 at 405 mµ to R0 18 and RE′ 15% at 656 mµ (in air). Vickers microhardness (100 g load) demonstrates directional anisotropy, the average value is 611 kg/mm2. Besides the main constituents, subordinate to trace quantities of Mg, Si, Al, Ca, and Cu were recorded by a spectrographic analysis. Unit-cell dimensions are a = 5·131 and c = 14·27 Å. Electron-microprobe analysis gave MnO 43·3, FeO 3·8, MgO 0·05, TiO2 52·9, SiO2 0·1, total 100·15%. The origin of the Chvaletice pyrophanite was most probably connected with a hydrothermal metamorphism of an Alpine-paragenesis type. The source of elements was older sedimentary, basic volcanic, and metamorphic mineral assemblages.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birks, (L.S.), 1963. Electron Probe Microanalysis. New York and London.Google Scholar
[Chukhrov, (F. V.) and Bonshtedt-Kupletskaya, (E. M.)] (Minerals), 2, no. 3, 275-8.Google Scholar
Gomes, (C. DE BARROS), 1969. Amer. Min. 54, 1654-61.Google Scholar
Hamberg, (A.), 1890. Geol. För. Förh. 12, 598-604.Google Scholar
Hartman, (P.), 1969. Min. Mag. 37, 366-9 [M.A. 20-310].CrossRefGoogle Scholar
Ishikawa, (Y.) and Akimoto, (S.), 1958. Journ. Phys. Soc. Japan, 13, 1110-18.CrossRefGoogle Scholar
Lee, (D.S.), 1955. Amer. Min. 40, 3240 [M.A. 13-596].Google Scholar
Neumann, (H.) and Bergstol, (S.), 1964. Norsk Geol. Tidsskr. 44, 3942 [M.A. 16-643 ].Google Scholar
Posnjak, (E.) and BARTH (T. F. W.), 1934. Zeits. Krist. 88, 271-80 [M.A. 6-45 ].Google Scholar
Portnov, (A. M.)] (Compt. Rend. Aead. Sci. URSS), 153, 187-9 [M.A. 18-201].Google Scholar
Shirane, (G.), Pickart, (S.J.), and Ishikawa, (Y.), 1959. [Journ. Phys. Soc. Japan, 14, 1352]; abstr. in WYCKOFF (R. G. W.), 1964, Crystal Structures, 2, 422. New York, London, and Sydney.Google Scholar
Smith, (W. CAMPBELL) and CLARINGBULL, (G.F.), 1947. Min. Mag. 28, 108-10.Google Scholar
Springer, (G.), 1966. Neues Jahrb. Min. Montash. 113-25 [M.A. 18-77].Google Scholar
Springer, (G.), 1967. Fortschr. Min. 45, 103-24 [M.A. 20-6].Google Scholar
Svoboda, (J.) and Fiala, (F.), 1951. véstnik Ústřed. úst. geol. 26, 114-20.Google Scholar
Žák, (L.), 1965. Cas. Min. Geol 10,495.Google Scholar
Žák, (L.), 1967. Ibid. 12, 451-2.Google Scholar