Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T01:14:28.888Z Has data issue: false hasContentIssue false

Molybdophyllite: crystal chemistry, crystal structure, OD character and modular relationships with britvinite

Published online by Cambridge University Press:  05 July 2018

U. Kolitsch*
Affiliation:
Mineralogisch-Petrographische Abt, Naturhistorisches Museum, Burgring 7, A—1010 Vienna, Austria Institut fur Mineralogie und Kristallographie, Universitat Wien, Althanstr. 14, A—1090 Vienna, Austria
S. Merlino
Affiliation:
Mineralogisch-Petrographische Abt, Naturhistorisches Museum, Burgring 7, A—1010 Vienna, Austria
D. Holtstam*
Affiliation:
Mineralogisch-Petrographische Abt, Naturhistorisches Museum, Burgring 7, A—1010 Vienna, Austria
*
Present address: Swedish Research Council, Box 1035, SE—101 38 Stockholm, Sweden

Abstract

A detailed crystal-chemical study of the complex layered silicate molybdophyllite was conducted using single-crystal X-ray diffraction (XRD) methods, supplemented by powder XRD, infrared (IR) and Raman spectroscopic studies, chemical analyses by energy-dispersive spectrometry (EDS) on a scanning electron microscope (SEM), and electron probe microanalysis (EPMA). The results, based on several samples from both Långban and Harstigen, Filipstad, Sweden, show that the crystal structure of molybdophyllite has an order-disorder (OD) character. The latter is especially evident in specimens from Långban which display a complex diffraction pattern characterized by the simultaneous presence of sharp spots, diffuse reflections and continuous streaks. The sharp reflections define the unit cell of the family structure (a = 3.124, c = 41.832 Å, space group R32). Two main polytypes (maximum degree of order structures) are indicated by the OD approach: a trigonal one and a monoclinic one; the latter polytype is the most common in the samples that were studied and has space group C2, with a = 16.232(6), b = 9.373(2), c = 14.060(3) Å, b = 97.36(4)º and V = 2121.5(10) Å3.

The crystal structure determination [R1 = 0.096], together with the EPMA, IR and Raman data, reveal that molybdophyllite is built up by a regular alternation of complex layers with a composition {Mg9[Si10O28(OH)8][OPb4]2}6+ and simple layers with a composition [(CO3)3·H2O]6–, leading to the ideal crystal-chemical formula Pb8Mg9[Si10O28(OH)8|O2|(CO3)3]·H2O (Z = 2).

This contribution is mainly devoted to the results obtained for molybdophyllite sensu stricto, but new data for britvinite [i.e. 'molybdophyllite-18 Å'] are also presented and its modular relationship with molybdophyllite is discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aminoff, G. (1918) Röntgenographische Ermittelung der Symmetrie und des Elementes p0 des Molybdophyllits. Geologiska Fö reningens i Stockhol. Förhandlingar, 40, 923938 Google Scholar
Bailey, S.W., Frank-Kamenetskii, A., Goldsztaub, S., Kato, A., Pabst, A., Schulz, H., Taylor, H.F.W., Fleischer, M. and Wilson, A.J.C. (1977) Report of the International Mineralogical Association (IMA) - International Union of Crystallography (IUCr) Joint Committeeon Nomenclature . Act Crystallographica, A33, 681684 Google Scholar
Baur, W.H. (1981) Interatomic distance predictions for computer simulation of crystal structures. Pp. 31-52 in: Structure and Bonding in Crystals, Vol. II (M. Ókeeffe, and A. Navrotsky, editors). Academic Press, New York..Google Scholar
Brese, N.E. and óKeefe, M. (1991) Bond-valence parameters for solids. Act Crystallographica, B44, 192197 CrossRefGoogle Scholar
Charalampides, G. (1994) Mineralogical and crystalchemical data of the lead silicate species ganomalite, margarosanite, and molybdophyllite from Långban, south-central Sweden and their synthetic equivalents. Oryktos Ploutos, 91, 3346.Google Scholar
Charalampides, G. and Lindqvist, B. (1988) Ganomalite, margarosanite and molybdophyllite from Långban, south-central Sweden, and synthetic equivalents. Meddelanden från Stockholms Universitets Geologiska Institution, 273, IV/1-IV/24.Google Scholar
Chukanov, N.V., Yakubovich, O.V., Pekov, I.V., Belakovsky, D.I. and Massa, W. (2008) Britvinite, Pb15Mg9(Si10O28)(BO3)4(CO3)2(OH)12O2, a new mineral species from Långban, Sweden. Geology of Or. Deposits, 50, 713719 Google Scholar
Dornberger-Schiff, K. (1956) On the order-disorder (OD-structures). Act Crystallographica, 9, 593601 CrossRefGoogle Scholar
Dornberger-Schiff, K. (1964) Grundzüge einer Theorie von OD-Strukturen aus Schichten. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Klasse für Chemie, Geologie und Biologie, 3, 1107 [in German].Google Scholar
Dornberger-Schiff, K. (1966) Lehrgang ü ber OD-Strukturen. Akademie-Verlag, Berlin..Google Scholar
Ďurovič, S. (1997) Fundamentals of the OD theory. Pp. 3-28 in: Modular Aspects of Minerals (S. Merlino, editor). EMU Notes in Mineralogy, 1. Eo˝tvo˝ s University Press, Budapest.Google Scholar
Ferraris, G. and Ivaldi, G. (1988) Bond valence vs bond length in O hydrogen bonds. Act Crystallographica, B44, 341344 CrossRefGoogle Scholar
Ferraris, G. and Gula, A. (2005) Polysomatic aspects of microporous minerals - Heterophyllosilicates, palysepioles and rhodesite-related structures. Pp. 69-104 in: Micro- and Mesoporous Mineral Phases (G. Ferraris and S. Merlino, editors). Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America, Washington DC, and the Geochemical Society, St Louis, Missouri. USA.Google Scholar
Ferraris, G., Makovicky, E. and Merlino, S. (2008) Crystallography of Modular Materials. IUCr Monographs on Crystallography, 15. Oxford University Press, Oxford UK.Google Scholar
Ferraris, G., Mellini, M. and Merlino, S. (1987) Electron-diffraction and electron-microscopy study of balangeroite and gageite: crystal structures, polytypism and fiber texture. American. Mineralogist, 72, 382391 Google Scholar
Fischer, R.X. and Tillmanns, E. (1988) The equivalent i s o t r o p i c d i s p l aceme n t f a c t o r . A c. Crystallographica, C44, 775776 Google Scholar
Flink, G. (1901) Mineralogische Notizen. Bulletin of the Geological Institution of the University of Uppsala, 5, 8196.Google Scholar
Guinier, A., Bokij, G.B., Boll-Dornberger, K., Cowley, J.M., Ďurovič, S., Jagodzinski, H., Krishna, P., de Wolff, P.M., Zvyagin, B.B., Cox, D.E., Goodman, P., Hahn, Th., Kuchitsu, K. and Abrahams, S.C. (1984) Nomenclature of polytype structures. Report of the International Union of Crystallography Ad hoc Committee on the Nomenclature of Disordered, Modulated and Polytype Structures. Act Crystallographica, A40, 399404 Google Scholar
Holtstam, D. and Langhof, J. (editors) (1999) Långban - The Mines, their Minerals, Geology and Explorers. Swedish Museum of Natural History and Raster Fö rlag, Stockholm & Christian Weise Verlag, Munich. 218 pp.Google Scholar
Krivovichev, S.V. (1999) Encapsulation effect and its influence on bond-valence parameters. Zeitschrift fü. Kristallographie, 214, 371372 Google Scholar
Krivovichev, S.V. (2009) Structural Crystallography of Inorganic Oxysalts. International Union of Crystallography Monographs on Crystallography, 22. Oxford University Press, Oxford, UK, 320 pp.CrossRefGoogle Scholar
Krivovichev, S.V. and Brown, I.D. (2001) Are the compressive effects of encapsulation an artefact of the bond valence parameters? Zeitschrift f. Kristallographie, 216, 245247 Google Scholar
Lapshin, A.E., Borisova, N.V., Ushakov, V.M. and Shepelev, Yu.F. (2006) Structure and some thermodynamic characteristics of the polymorphs of rubidium silica te Rb6Si1 0O2 3. Zhurnal Neorganicheskoi Khimii, 51, 487493 [in Russian]..CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059 CrossRefGoogle Scholar
Liebau, F. (1985) Structural Chemistry of Silicates - Structure, Bonding, and Classification. Springer- Verlag, Berlin, 347 pp.Google Scholar
Liebau, F. (2000) Determination of conduction path of semiconducting electrons by bond-valence calculations. Zeitschrift f. Kristallographie, 215, 381383 Google Scholar
Liebau, F. and Wang, X. (2008) A bond-valence investigation of two series of isostructural lanthanide compounds. Act Crystallographica, B64, 299304 CrossRefGoogle Scholar
Liebau, F., Wang, X. and Liebau, W. (2009) Stoichiometric and structural valence - two different sides of the same coin: ‘bonding power’. Chemistry - A Europea. Journal, 15, 27282737 Google Scholar
Makovicky, E. (1997) Modularity - different approaches. Pp. 315-343 in: Modular Aspects of Minerals (S. Merlino, editor). EMU Notes in Mineralogy, 1. Eo˝tvo˝ s University Press, Budapest.Google Scholar
Merlino, S. (1972) The crystal structure of zeophyllite. Act Crystallographica, B28, 27262732 CrossRefGoogle Scholar
Merlino, S. (1997) OD approach in minerals: examples and applications. Pp. 29-54 in: Modular Aspects of Minerals (S. Merlino, editor). EMU Notes in Mineralogy, 1. Eo˝tvo˝ s University Press, Budapest.CrossRefGoogle Scholar
Otwinowski, Z., Borek, D., Majewski, W. and Minor, W. (2003) Multiparametric scaling of diffraction intensities. Act Crystallographica, A59, 228234 CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Act Crystallographica, A32, 751767 Google Scholar
Sheldrick, G.M. (1988) XEMP, Programm zur semiempirischen Absorptionskorrektur. Universitä t Gö ttingen, Göttingen, Germany.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Act Crystallographica, A64, 112122 CrossRefGoogle Scholar
Schichl, H., Voellenkle, H. and Wittmann, A. (1977) Die Kristallstruktur von Rb6Si10O23. Monatshefte fü. Chemie, 104, 854863 Google Scholar
Spek, A.L. (2003) Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography, 36, 713.CrossRefGoogle Scholar
Spek, A.L. (2009) Structure validation in chemical crystallography. Act Crystallographica, D65, 148155 Google Scholar
Wang, X. and Liebau, F. (2007) Influence of polyhedron distortions on calculated bond-valence sums for cations with one lone electron pair. Act Crystallographica, B63, 216228 CrossRefGoogle Scholar
Yakubovich, O.V., Massa, W. and Chukanov, N.V. (2008) Crystal s t r u c t u r e of br i t v i n i t e [Pb7(OH)3F(BO3)2(CO3)][Mg4.5(OH)3(Si5O14)]: a new layered silicate with an original type of silicon-oxygen networks. Crystallograph. Reports, 53, 206215 Google Scholar
Supplementary material: File

Kolitsch et al. supplementary material

Molybdophyllite CIF

Download Kolitsch et al. supplementary material(File)
File 97.5 KB
Supplementary material: File

Kolitsch et al. supplementary material

Molybdophyllite FCF

Download Kolitsch et al. supplementary material(File)
File 162.2 KB