Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-07T06:31:37.418Z Has data issue: false hasContentIssue false

Gold-bearing arsenopyrite and pyrite in refractory ores: analytical refinements and new understanding of gold mineralogy

Published online by Cambridge University Press:  05 July 2018

M. Benzaazoua*
Affiliation:
Laboratoire Environnement et Minéralurgie, École Nationale Supérieure de Géologie, UMR 6975 INPL-CNRS, B.P. 40, 54501 Vandoeuvre-Lès-Nancy Cedex, France Université du Québec en Abitibi-Témiscamingue, URSTM, 445 Boulevard de l’Université, Rouyn-Noranda, Qc, Canada J9X 5E4
P. Marion
Affiliation:
Laboratoire Environnement et Minéralurgie, École Nationale Supérieure de Géologie, UMR 6975 INPL-CNRS, B.P. 40, 54501 Vandoeuvre-Lès-Nancy Cedex, France
F. Robaut
Affiliation:
Consortium des Moyens Technologiques Communs, Institut National Polytechnique de Grenoble, B.P. 75, 38402 St Martin D’Hères Cedex, France
A. Pinto
Affiliation:
University of Lisbon – Creminer/Geology Department, Edifício C6, Piso 4, Campo Grande, 1749-016 Lisboa, Portugal
*

Abstract

A multidisciplinary approach has been used to study Au occurrences within pyrite and arsenopyrite in four refractory Au ores from Colombia, France (Le Châtelet and Villeranges) and Portugal (Neves Norte). The Au was characterized by optical and scanning electron microscopy and analysed using electron and ion microprobes to determine Au distribution, with particular attention to spectral interferences in electron and ion microprobes, background measurements in electron probes, and quantitative analysis using external standardization in ion probes. The ionic emission rate is proven to be dependent on the Au status; combined Au has a greater ion emission than metallic Au. Invisible Au occurrences are closely linked to As distribution. Gold bonding in arsenopyrite, examined by transmission electron microscopy, is shown to be dispersed within the FeAsS crystal structure. Typical growth patterns and As-Au diffusion zoning in pyrite and arsenopyrite may account for the very irregular distribution of Au in these minerals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashley, P.M., Creagh, C.J. and Ryan, C.G. (2000) Invisible gold in ore and mineral concentrates from the Hillgrove gold-antimony deposits, NSW, Australia. Mineralium Deposita, 35, 285–301.CrossRefGoogle Scholar
Aubert, G., Duong, Phan Kizu and Geffroy, J. (1964) Sur la localisation de l'or dans le minerais du Châtelet (Creuse). Bulletin de la Société Française de Minéralogie et de Cristallographie, 87, 623–624.Google Scholar
Bakken, B.M., Hochella, M.F., Marchal, A.F. and Turner, A.M. (1989) High resolution microscopy of gold in unoxidised ore fromt he Carlin mine, Nevada. Economic Geology, 84, 171–179.CrossRefGoogle Scholar
Benzaazoua, M. (1996) Caractérisation physico-chimique et minéralogique de produits miniers sulfurés en vue de la réduction de leur toxicité et de leur valorisation. Thèse de doctorat de l'Institut National Polytechnique de Loraine, France.Google Scholar
Boiron, M.C. (1987) Minéralisation à Au, As, Sb, altération hydrothermales et fluides associés dans le bassin Villerange (Combraille, Massif central français). Thèse de doctorat de l'Université de Poitiers. Géol. Géochim. Uranium, Mém. CREGU Nancy, 15, 310 pp.Google Scholar
Boiron, M.C., Cathelineau, M., Gao, Y., Holliger, P. and Marion, P. (1994) New improvements in the in-situ analysis and mapping of combined gold in sulphides at the ppmlevel. Pp. 577–580 in: Proceedings of SIMS IX Congress, Yokohama, (Japan), 11–1993 (Benninghoven, A., Hhei, Y., Shimizu, R. and Werner, H.W., editors).Google Scholar
Bonnemaison, M. (1987) Les concentrations aurifères dans les zones de cisaillement: Métallogénie et prospection. Thèse Doctorat es Sciences, Université de Toulouse, France.Google Scholar
Cabri, L.J., (1988) Applications of proton and nuclear microprobes in ore deposit mineralogy and metallurgy. Nuclear Instruments and Methods in Physics Research, B30, 459–465.Google Scholar
Cabri, L.J., and McMahon, G. (1995) SIMS analysis of sulphide minerals for Pt and Au Methodology and relative sensitivity factors (RSF). The Canadian Mineralogist, 33, 349–359.Google Scholar
Cabri, L.J., Chryssoulis, S., De Villiers, J.P.R., Laflamme, J.H.G. and Buseck, P.R. (1989) The nature of ‘invisible' Gold in arsenopyrite. The Canadian Mineralogist, 27, 353–362.Google Scholar
Cabri, L.J., Gaspar, O., Lastra, R. and McMahon, G. (1998) Distribution of gold in tin-rich samples from the Neves Corvo orebody, Portugal. The Canadian Mineralogist, 36, 1347–1360.Google Scholar
Cabri, L.J., Newville, M., Gordon, R.A., Crozier, E.D., Sutton, S.R., McMahon, G. and Jiang, D.-T. (2000) Chemical speciation of gold in arsenopyrite. The Canadian Mineralogist, 38, 1265–1281.CrossRefGoogle Scholar
Cathelineau, M., Boiron, M.C., Holliger, P., Marion, P. and Denis, M. (1989) Gold-rich arsenopyrites: crystal-chemistry, gold location and state, physical and chemical conditions of crystallization. Pp. 328–341 in: The Geology of Gold Deposits: The Perspective in 1988 (Keays, R., Ramsay, R. and Groves, D., editors). Economic Geology Monograph 6. Economic Geology Publishing Co., New Haven, Connecticut, USA.Google Scholar
Chen, T.T., Cabri, L.J. and Dutrizac, J.E. (2002) Characterizing gold in refractory sulfide gold ores and residues. JOM, 54(12), 20–22.CrossRefGoogle Scholar
Chryssoulis, S.L. and Cabri, L.J. (1990) Significance of gold mineralogical balance in mineral processing. Pp. C1–C10 in: Recycling of Metalliferrous Materials Conference, Birmingham. Institution of Mining and Metallurgy, London.Google Scholar
Chryssoulis, S.L., Cabri, L.J. and Salter, R.S. (1987) Direct determination of invisible gold in refractory sulphide ores. Pp. 235–244 in: Proceedings of the International Symposium on Gold Metallurgy –Refractory Gold (Salter, R.S., Wyslouzil, D.M. and McDonald, G.W., editors). Pergamon Press, Toronto, Canada.Google Scholar
Claassen, R. (1991) The effect of mineralogy on the bacterial oxidation of refractory gold-bearing sulphides from Barberton deposit. In: Colloquium: Bacterial Oxidation for the Recovery of Metals. South African Institute of Mining and Metallurgy, Johannesburg.Google Scholar
Cook, N.J. and Chryssoulis, S.L. (1990) Concentrations of ‘invisible’ gold in the common sulfides. The Canadian Mineralogist, 28, 1–16.Google Scholar
Ferreira, A., Pinto, A. and Bowles, J.F.W. (1997) The occurrence of gold in the Neves-Corvo Deposit, Portugal. P. 91 in: SEG Neves Corvo Field Conference, Lisbon (Barriga, F.J.A.S., editor). Abstract and Program, Society of Economic Geologists.Google Scholar
Fleet, M.E. and Mumin, A.H. (1997) Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American Mineralogist, 82, 182–193.CrossRefGoogle Scholar
Fleet, M.E., MacLean, P.J. and Barbier, J. (1989) Oscillatory-zoned As-bearing pyrite froms tratabound and stratiformgold deposits: an indicator of ore fluid evolution. Economic Geology Monograph. 6, 356–362.Google Scholar
Fleet, M.E., Chryssoulis, S.L., MacLean, P.J., Davidson, R. and Weisener, C.G. (1993) Arsenian pyrite from gold deposits: Au and As distribution investigated by SIMS and EMP, and color staining and surface oxidation by XPS and LIMS. The Canadian Mineralogist, 31, 1–17 Google Scholar
Friedl, J. (1989) Mössbauerspektroskopische Untersuchugen an Mineralen, Erzen und Aktivkohleadsorbaten des Goldes. Diplomarbeit, Technische Universität München, Physik Department.Google Scholar
Friedl, J., Wagner, F.E., Sawick, J.A., Harris, D.C., Mandarino, J.A. and Marion, P. (1992) 197Au, 57Fe and 121Sb Mössbauer study of gold minerals and ores. Hyperfine Interactions, 70, 945–948.CrossRefGoogle Scholar
Friedl, J., Wagner, F.E. and Wang, N. (1995) On the chemical state of combined gold in sulfidic ores : conclusions from Mössbauer source experiments. Neues Jahrbuch für Mineralogie, Abhandlungen, 169, 279–290.Google Scholar
Gaspar, O.C. (2002) Mineralogy and sulfide mineral chemistry of the Neves-Corvo ores, Portugal: insight into their genesis. The Canadian Mineralogist, 40, 611–636.CrossRefGoogle Scholar
Genkin, A.D., Bortnikov, N.S., Cabri, L.J., Wagner, F.E., Stanley, C.J., Safonov, Y.G., McMahon, G., Friedl, J., Kerzin, A.L. and Gamyanin, G.N. (1998) A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation. Economic Geology, 93, 463–487.CrossRefGoogle Scholar
Graham, J., Robinson, B.W. and Walker, R.K. (1989) Gold in arsenopyrite. Pp. 55–57 in: Proceedings. of the AusIMM Mineralogy-Petrology Symposium, Sydney.Google Scholar
Harris, D.C. (1990) I.- Fundamental aspects of gold deposits, the mineralogy of gold and its relevance to gold recoveries. Mineralium Deposita, 25[Suppl], S3–S7.CrossRefGoogle Scholar
Johan, Z., Marcoux, E. and Bonnemaison, M. (1989) Arsénopyrite aurifère: mode de substitution de Au dans la structure de FeAsS. Comptes Rendus de l'Académie des Sciences, Série II, 308, 185–191.Google Scholar
Kojonen, K. and Johanson, B. (1995) Improved electron probe microanalysis services at Geological Survey of Finland. Pp. 181–184 in: Geological Survey of Finland, Current Research 1993–1994 (Autio, S., editor). Geological Survey of Finland, Special Paper 20, 222 pp.Google Scholar
Korobuskhin, I.M. (1970) Forms of occurrence of finely dispersed gold in pyrite and arsenopyrite. Doklady Akademii Nauk SSSR, 192(5), 122–123.Google Scholar
Kurantu, G. (1941) Synthetic study of gold containing pyrite. Suigokwai. Si, Japan, 10, 419–424.Google Scholar
Larocque, A.C.L., Hodgson, C.J., Cabri, L.J. and Jackman, J.A. (1995) Ion-microprobe analysis of pyrite, chalcopyrite and pyrrhotite fromthe Mobrun VMS deposit in NorthWestern Quebec: Evidence for metamorphic remobilization of gold. The Canadian Mineralogist, 33, 373–388.Google Scholar
Jiuling, Li, Daming, Feng, Jeng, Qi and Guilan, Zhang (1995) The existence of the negative valence state of gold in sulfide minerals and its formation mechanism. Acta Geologica Sinica, 69, 67–77.Google Scholar
Marion, P. (1988) Caractérisation de minerais sulfurés aurifères: Mise en uvre de méthodes classiques et nouvelles. Thèse Doctorat d'État de l'Institut National Polytechnique de Loraine - ENSG Nancy, France, 367 pp.Google Scholar
Marion, P., Regnard, J.R. and Wagner, F.E. (1986) Étude de l'état chimique de l'or dans des sulfures aurifères par spectroscopie Mössbauer de 197Au: premiers resultats. Comptes Rendus de l'Academie des Sciences, Paris, Serie II, 302, 571–574.Google Scholar
Marion, P., Holliger, P., Boiron, M.C., Cathelineau, M. and Wagner, F.E. (1991a) New improvements in the characterization of refractory gold in pyrites: an electron microprobe, Mössbauer spectrometry and ion microprobe study. Pp. 389–395 in: Proceedings of Symposium "Brazil Gold '91", Bello Horizonte, Minas Gerais, Brazil (Ladeira, E.A., editor). Balkema, Rotterdam.Google Scholar
Marion, P., Monroy, M., Holliger, P., Boiron, M.C., Cathelineau, M., Wagner, F.E. and Friedl, J. (1991b) Gold bearing pyrites: a combined ion microprobe and Mössbauer spectrometry approach. Pp. 677–680 in: Proceedings of the 25 years SGA Anniversary Meeting "Source, Transport and Deposition of Metals", Nancy, France (Pagel, M. and Leroy, J., editors). Balkema, Rotterdam.Google Scholar
Marion, P., Mustin, C., Monroy, M. and Berthelin, J. (1991c) Effect of auriferous sulfide minerals structure and composition on their bacterial weathering. Pp. 561–564 in: Proceedings of the 25 years SGA Anniversary Meeting "Source, Transport and Deposition of Metals", Nancy, France. Balkema, Rotterdam.Google Scholar
McCoy, D., Newberry, R., Severin, K., Marion, P., Flanigan, B. and Freeman, C. (2002) Paragenesis and metal associations in interior Alaska gold deposits : an example for the Fairbanks district. Pp. 33–38 in: Mining Engineering and SME Transactions, Technical paper 00–036. Proceedings of the SME annual meeting, Salt Lake City, Utah, USA.Google Scholar
Monroy, M. (1993) Biolixiviation-cyanuration de minerais sulfurés aurifères réfractaires en dispositifs de percolation: Comportement des populations de Thiobacillus ferrooxidans et influence de la minéralogie et des conditions opératoires. Thèse de doctorat de l'Institut National Polytechnique de Loraine, France.Google Scholar
Monroy, M., Marion, P., Berthelin, J. and Videau, G. (1993) Heap-bioleaching of simulated refractory sulfide gold ores by Thiobacillus ferrooxidans: a laboratory approach on the influence of mineralogy. Pp. 489–498 in: Biohydrometallurgical Technologies, Vol. 1: Bioleaching Processes (Torma, A.E., Wey, J.E. and Lakshmanan, V.I., editors). Proceedings of the International Biohydrometallurgy Symposium, Jackson Hole, Wyoming, USA. The Minerals, Metals and Materials Society, Warrendale, Pennsylvania, USA.Google Scholar
Pinto, A. (1999) Estudo da Textura, Mineralogia e Geoquímica Mineral dos Minérios da Massa de Corvo do Jazigo de Neves Corvo. Tese de Mestrado. Faculdade de Ciências da Universidade de Lisboa, 301 pp.Google Scholar
Pinto, A., Ferreira, A., Bowles, J.F.W. and Gaspar, O.C. (1997) Mineralogical and textural characterization of the Neves-Corvo ores: metallogenetic implications. In: SEG Field Conference, Rectory of the University of Lisbon, Portugal.Google Scholar
Pinto, A., Marion, P. and Ferreira, A. (1998) Caracterizaçaõdo ouro invisível em‘m inérios' FE da massa de Neves Norte do Jazigo de Neves Corvo. Pp. F19–F22 in: Actas do V Congresso Nacional de Geologia (Resumos alargados), Tom o84, Fascículo 2, Lisbon, Portugal.Google Scholar
Remond, G., Gilles, C., Fialin, M., Rouer, O., Marinenko, R., Myklebust, R. and Newbury, D. (1996) Intensity Measurement of WD X-ray emission band. Mikrochimica Acta, 13, 61–86.Google Scholar
Self, P.G., Norrish, K., Milnes, A.R., Graham, J. and Robinson, B.W. (1990) Holes in the background in XRS. X-ray Spectrometry, 19, 59–61.CrossRefGoogle Scholar
Simon, G., Hui, Huang, Penner-Hahn, J.E., Kesler, S.E. and Li-Shun, Kao (1999a) Oxidation state of gold and arsenic in gold-bearing arsenian pyrite. American Mineralogist, 84, 1071–1079.CrossRefGoogle Scholar
Simon, G., Kesler, S.E. and Chryssoulis, S.L. (1999b). Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada: Implications for deposition of gold in Carlin-type deposits. Economic Geology, 94, 405–422.CrossRefGoogle Scholar
Swash, P.M. and Ellis, P. (1986) Roasting of arsenical gold ores: a mineralogical perspective. Pp. 235–257 in: Proceedings of the International Conference on Gold ‘Gold 100'. Vol. 2: Extractive Metallurgy of Gold (Fivaz, C.E. and King, R.P., editors). SAIMM, Johannesburg, South Africa.Google Scholar
Voitsekhovskii, V.N., Berkhovskii, B.P., Jatsurzinskaia, O.A., Tsulajev, L.V. and Nikitin, M.V. (1975) Form in which invisible gold is found in arsenopyrite and pyrite. Tsvetnaya Metallurgia, 3, 60–65. (in Russian).Google Scholar
Wagner, F.E., Marion, P. and Regnard, J.R. (1986) Mössbauer study of the chemical state of gold in gold ore. Pp. 435–443 in: Proceedings of the International Conference on Gold ‘Gold 100'. Vol. 2: Extractive Metallurgy of Gold (Fivaz, C.E. and King, R.P., editors). SAIMM, Johannesburg, South Africa.Google Scholar
Wagner, F.E., Marion, P. and Swash, P.M. (1988) Mössbauer spectroscopy in the study of the chemical state of gold in gold ores. Pp. 82–96 in: Proceedings of a ‘workshop on rare and precious metals' (Fuganti, A. and Morteani, G., editors). Quaderni di Castel Ivano 7, CIC edizioni int.Google Scholar
Wagner, F.E., Swash, P.M. and Marion, P. (1989). A 197Au and 57Fe Mössbauer study of the roasting of refractory gold ores. Hyperfine Interactions, 46, 681–688.CrossRefGoogle Scholar
Wells, J.D. and Mullens, T.E. (1973) Gold-bearing arsenian pyrite determined by microprobe analysis, Cortez and Carlin gold mines, Nevada. Economic Geology, 68, 405–422.CrossRefGoogle Scholar
Wong, J. and Rao, K.J. (1983) Double fluorescences detection of XANES and EXAFS signals fromdilute species in competing fluorescent matrices. Solid State Communications, 45, 853–857.CrossRefGoogle Scholar
Wu, X. and Delbove, F. (1989) Hydrothermal synthesis of gold bearing arsenopyrite. Economic Geology, 84, 2029–2032.CrossRefGoogle Scholar
Yang, S., Blum, N., Rahders, E. and Zhang, Z. (1998) The nature of invisible gold in sulfides fromthe Xiangxi Au-Sb-W ore deposit in North-western Hunan, People's republic of China. The Canadian Mineralogist, 36, 136l–1372.Google Scholar
Yvon, J., Marion, P., Michot, L., Villieras, F., Wagner, F.E. and Friedel, J. (1991) Development of mineralogy applications in mineral processing. European Journal of Mineralogy, 3, 667–676.CrossRefGoogle Scholar
Zhang, Z., Yang, S. and Yi, W. (1987) Studies of submicron-gold and lattice gold in some minerals. Journal of Central-South Institute of Mining and Metallurgy, 18, 355–361.Google Scholar