We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Scanning transmission electron microscopy (STEM) is widely used for imaging, diffraction, and spectroscopy of materials down to atomic resolution. Recent advances in detector technology and computational methods have enabled many experiments that record a full image of the STEM probe for many probe positions, either in diffraction space or real space. In this paper, we review the use of these four-dimensional STEM experiments for virtual diffraction imaging, phase, orientation and strain mapping, measurements of medium-range order, thickness and tilt of samples, and phase contrast imaging methods, including differential phase contrast, ptychography, and others.
Correlated light and electron microscopy (CLEM) has become a popular technique for combining the protein-specific labeling of fluorescence with electron microscopy, both at room and cryogenic temperatures. Fluorescence applications at cryo-temperatures have typically been limited to localization of tagged protein oligomers due to known issues of extended triplet state duration, spectral shifts, and reduced photon capture through cryo-CLEM objectives. Here, we consider fluorophore characteristics and behaviors that could enable more extended applications. We describe how dialkylcarbocanine DiD, and its autoquenching by resonant energy transfer (RET), can be used to distinguish the fusion state of a lipid bilayer at cryo-temperatures. By adapting an established fusion assay to work under cryo-CLEM conditions, we identified areas of fusion between influenza virus-like particles and fluorescently labeled lipid vesicles on a cryo-EM grid. This result demonstrates that cryo-CLEM can be used to localize functions in addition to tagged proteins, and that fluorescence autoquenching by RET can be incorporated successfully into cryo-CLEM approaches. In the case of membrane fusion applications, this method provides both an orthogonal confirmation of functional state independent of the morphological description from cryo-EM and a way to bridge room-temperature kinetic assays and the cryo-EM images.
Spheroids—three-dimensional aggregates of cells grown from a cancer cell line—represent a model of living tissue for chemotherapy investigation. Distribution of chemotherapeutics in spheroid sections was determined using the matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). Proliferating or apoptotic cells were immunohistochemically labeled and visualized by laser scanning confocal fluorescence microscopy (LSCM). Drug efficacy was evaluated by comparing coregistered MALDI MSI and LSCM data of drug-treated spheroids with LSCM only data of untreated control spheroids. We developed a fiducial-based workflow for coregistration of low-resolution MALDI MS with high-resolution LSCM images. To allow comparison of drug and cell distribution between the drug-treated and untreated spheroids of different shapes or diameters, we introduced a common diffusion-related coordinate, the distance from the spheroid boundary. In a procedure referred to as “peeling”, we correlated average drug distribution at a certain distance with the average reduction in the affected cells between the untreated and the treated spheroids. This novel approach makes it possible to differentiate between peripheral cells that died due to therapy and the innermost cells which died naturally. Two novel algorithms—for MALDI MS image denoising and for weighting of MALDI MSI and LSCM data by the presence of cell nuclei—are also presented.