Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T00:36:46.007Z Has data issue: false hasContentIssue false

X-Ray Absorption Correction for Quantitative Scanning Transmission Electron Microscopic Energy-Dispersive X-Ray Spectroscopy of Spherical Nanoparticles

Published online by Cambridge University Press:  06 April 2016

Thomas Slater*
Affiliation:
School of Materials, University of Manchester, Manchester M13 9PL, UK
Yiqiang Chen
Affiliation:
School of Materials, University of Manchester, Manchester M13 9PL, UK
Gregory Auton
Affiliation:
School of Computer Science, University of Manchester, Manchester M13 9PL, UK
Nestor Zaluzec
Affiliation:
School of Materials, University of Manchester, Manchester M13 9PL, UK Electron Microscopy Center, Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
Sarah Haigh*
Affiliation:
School of Materials, University of Manchester, Manchester M13 9PL, UK
*
*Corresponding authors. [email protected]; [email protected]
*Corresponding authors. [email protected]; [email protected]
Get access

Abstract

A new method to perform X-ray absorption correction for spherical particles in quantitative energy-dispersive X-ray spectroscopy in the scanning transmission electron microscope is presented. An absorption correction factor is derived and simulated data is presented encompassing a range of X-ray absorption conditions. Theoretical calculations are compared with experimental data of X-ray counts from Au nanoparticles to verify the derived methodology. The effect of detector elevation angle is considered and a comparison with thin-film absorption correction is included.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, J.T. & Buseck, P.R. (1975). Quantitative chemical analysis of individual microparticles using the electron microprobe. Anal Chem 47, 21782192.Google Scholar
Baer, D.R. & Engelhard, M.H. (2010). XPS analysis of nanostructured materials and biological surfaces. J Electron Spectrosc Relat Phenom 178, 415432.Google Scholar
Baer, D.R., Gaspar, D.J., Nachimuthu, P., Techane, S.D. & Castner, D.G. (2010). Application of surface chemical analysis tools for characterization of nanoparticles. Anal Bioanal Chem 396, 9831002.Google Scholar
Carvalho, M.D., Henriques, F., Ferreira, L.P., Godinho, M. & Cruz, M.M. (2013). Iron oxide nanoparticles: The influence of synthesis method and size on composition and magnetic properties. J Solid State Chem 201, 144152.Google Scholar
Cliff, G. & Lorimer, G.W. (1975). Quantitative-analysis of thin specimens. J Microsc 103, 203207.Google Scholar
Cui, C., Gan, L., Li, H.-H., Yu, S.-H., Heggen, M. & Strasser, P. (2012). Octahedral PtNi nanoparticle catalysts: Exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett 12, 58855889.Google Scholar
Goldstein, J.I., Costley, J.L., Lorimer, G.W. & Reed, R.J.B. (1977). Quantitative X-ray analysis in the electron microscope. In Scanning Electron Microscopy, Johari, O. (Ed.), pp. 315325. Chicago, IL: IITRI.Google Scholar
Henke, B.L., Gullikson, E.M. & Davis, J.C. (1993). X-ray interactions—photoabsorption, scattering, transmission and reflection at E=50-30,000eV, Z=1-92. At Data Nucl Data Tables 54, 181342.Google Scholar
Hostetler, M.J., Zhong, C.J., Yen, B.K.H., Anderegg, J., Gross, S.M., Evans, N.D., Porter, M. & Murray, R.W. (1998). Stable, monolayer-protected metal alloy clusters. J Am Chem Soc 120, 93969397.Google Scholar
Jones, E., Oliphant, T.O. & Peterson, P.P. (2001). SciPy: Open source scientific tools for Python. Retrieved 1 March 2016 from http://www.scipy.org/.Google Scholar
Kariuki, N.N., Luo, J., Maye, M.M., Hassan, S.A., Menard, T., Naslund, H.R., Lin, Y.H., Wang, C.M., Engelhard, M.H. & Zhong, C.J. (2004). Composition-controlled synthesis of bimetallic gold-silver nanoparticles. Langmuir 20, 1124011246.Google Scholar
Philibert, J. (1963). A method for calculating the absorption correction in electron-probe microanalysis. In 3rd International Congress on X-Ray Optics and Microanalysis, Pattee, H.H., Cosslett, V.E. & Engstrom, A. (Eds.), pp. 379392. New York: Academic.Google Scholar
Qiu, Y., Nguyen, V.H., Dobbie, A., Myronov, M. & Walther, T. (2013). Calibration of thickness-dependent k-factors for germanium X-ray lines to improve energy-dispersive X-ray spectroscopy of SiGe layers in analytical transmission electron microscopy. J Phys Conf Ser 471, 012031.Google Scholar
Salazar, J.S., Perez, L., De Abril, O., Lai Truong, P., Ihiawakrim, D., Vazquez, M., Greneche, J.-M., Begin-Colin, S. & Pourroy, G. (2011). Magnetic iron oxide nanoparticles in 10-40 nm range: Composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem Mater 23, 13791386.Google Scholar
Sheridan, P.J. (1989). Determination of experimental and theoretical KαSi factors for a 200-kV analytical electron-microscope. J Electron Microsc Tech 11, 4161.Google Scholar
Slater, T.J.A., Camargo, P.H.C., Burke, M.G., Zaluzec, N.J. & Haigh, S.J. (2014 a). Understanding the limitations of the Super-X energy dispersive X-ray spectrometer as a function of specimen tilt angle for tomographic data acquisition in the S/TEM. J Phys Conf Ser 522, 012025.Google Scholar
Slater, T.J.A., Macedo, A., Schroeder, S.L.M., Burke, M.G., O’brien, P., Camargo, P.H.C. & Haigh, S.J. (2014 b). Correlating catalytic activity of Ag–Au nanoparticles with 3D compositional variations. Nano Lett 14, 19211926.Google Scholar
Von Harrach, H.S., Dona, P., Freitag, B., Soltau, H., Niculae, A. & Rohde, M. (2009). An integrated silicon drift detector system for FEI Schottky field emission transmission electron microscopes. Microsc Microanal 15, 208209.Google Scholar
Walther, T. & Wang, X. (2015). Self-consistent method for quantifying indium content from X-ray spectra of thick compound semiconductor specimens in a transmission electron microscope. J Microsc. Early View.Google Scholar
Watanabe, M. & Williams, D.B. (2006). The quantitative analysis of thin specimens: A review of progress from the Cliff-Lorimer to the new zeta-factor methods. J Microsc 221, 89109.CrossRefGoogle Scholar
Wood, J.E., Williams, D.B. & Goldstein, J.I. (1984). Experimental and theoretical determination of kαFe factors for quantitative X-ray microanalysis in the analytical electron microscope. J Microsc 133, 255274.Google Scholar
Wu, J., Kim, A., Marvin, R., Myers, B., Woodruff, T., O’halloran, T., Dravid, V., Mcilwrath, K. & Li, S. (2010). Imaging and elemental mapping of biological specimens with the Hitachi HD-2300A dual-EDS scanning transmission electron microscope. Microsc Microanal 16(Suppl 2), 884885.Google Scholar
Zaluzec, N.J. (1979). Quantitative X-ray microanalysis: Instrumental considerations and applications to materials science. In Introduction to Analytical Electron Microscopy, Hren, J.J., Goldstein, J.I. & Joy, D.C. (Eds.), pp. 121155. New York: Plenum Press.Google Scholar
Zaluzec, N.J. (1981). On the geometry of the absorption correction in analytical electron microscopy. In Microbeam Analysis, Geiss, R. (Ed.), pp. 325--328. San Francisco: San Francisco Press.Google Scholar
Zreiba, N.A. & Kelly, T.F. (1988). Absorption and fluorescence corrections of characteristic X-rays from thin spheres. X-Ray Spectrom 17, 229238.Google Scholar