Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T20:10:51.428Z Has data issue: false hasContentIssue false

Visualization of Cellular Components in a Mammalian Cell with Liquid-Cell Transmission Electron Microscopy

Published online by Cambridge University Press:  31 January 2017

Stephanie Besztejan
Affiliation:
Chemistry Department, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg, Germany The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
Sercan Keskin
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761 Hamburg, Germany
Stephanie Manz
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761 Hamburg, Germany
Günther Kassier
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761 Hamburg, Germany
Robert Bücker
Affiliation:
Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761 Hamburg, Germany
Deybith Venegas-Rojas
Affiliation:
Institute of Microsystems Technology, Hamburg University of Technology (TUHH), Eißendorfer Straße 42, 21073 Hamburg, Germany
Hoc K. Trieu
Affiliation:
Institute of Microsystems Technology, Hamburg University of Technology (TUHH), Eißendorfer Straße 42, 21073 Hamburg, Germany
Andrea Rentmeister
Affiliation:
Institute of Biochemistry, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 2, 48149 Muenster, Germany
R. J. Dwayne Miller*
Affiliation:
The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Geb. 99 (CFEL), 22761 Hamburg, Germany Departments of Chemistry and Physics, University of Toronto, 80 St George St, Toronto, ON, CanadaM5S3H6
*
*Corresponding author. [email protected]
Get access

Abstract

We present liquid-cell transmission electron microscopy (liquid-cell TEM) imaging of fixed and non-fixed prostate cancer cells (PC3 and LNCaP) with high resolution in a custom developed silicon nitride liquid cell. Fixed PC3 cells were imaged for 90–120 min without any discernable damage. High contrast on the cellular structures was obtained even at low electron doses (~2.5 e/nm2 per image). The images show distinct structures of cell compartments (nuclei and nucleoli) and cell boundaries without any further sample embedding, dehydration, or staining. Furthermore, we observed dynamics of vesicles trafficking from the cell membrane in consecutive still frames in a non-fixed cell. Our findings show that liquid-cell TEM, operated at low electron dose, is an excellent tool to investigate dynamic events in non-fixed cells with enough spatial resolution (few nm) and natural amplitude contrast to follow key intracellular processes.

Type
Biological Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

These authors contributed equally to this work.

References

Angermuller, S. & Fahimi, H.D. (1982). Imidazole-buffered Osmium-Tetroxide - an excellent stain for visualization of lipids in transmission electron-microscopy. Histochem J 14, 823835. https://doi.org/10.1007/Bf01033631.Google Scholar
Bellare, J.R., Davis, H.T., Scriven, L.E. & Talmon, Y. (1988). Controlled environment vitrification system: an improved sample preparation technique. J Electron Microsc Tech 10, 87111. https://doi.org/10.1002/jemt.1060100111.Google Scholar
Boudaiffa, B., Cloutier, P., Hunting, D., Huels, M.A. & Sanche, L. (2000). Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 287, 16581660.CrossRefGoogle ScholarPubMed
Brodin, L., Low, P. & Shupliakov, O. (2000). Sequential steps in clathrin-mediated synaptic vesicle endocytosis. Curr Opin Neurobiol 10, 312320. https://doi.org/10.1016/S0959-4388(00)00097-0.Google Scholar
Cataldo, A.M., Peterhoff, C.M., Troncosco, J.C., Gomez-Isla, T., Hyman, B.T. & Nixon, R.A. (2000). Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and Down syndrome - Differential effects of APOE genotype and presenilin mutations. Am J Pathol 157, 277286. https://doi.org/10.1016/S0002-9440(10)64538-5.CrossRefGoogle ScholarPubMed
Chi, Q.J., Yin, T.Y., Gregersen, H., Deng, X.Y., Fan, Y.B., Zhao, J.B., Liao, D.H. & Wang, G.X. (2014). Rear actomyosin contractility-driven directional cell migration in three-dimensional matrices: a mechanochemical coupling mechanism. J R Soc Interface 11, 20131072 https://doi.org/Artn 2013107210.1098/Rsif.2013.1072.CrossRefGoogle Scholar
Cohen, M., Tzur, Y.B., Neufeld, E., Feinstein, N., Delannoy, M.R., Wilson, K.L. & Gruenbaum, Y. (2002). Transmission electron microscope studies of the nuclear envelope in Caenorhabditis elegans embryos. J Struct Biol 140, 232240.Google Scholar
Cramer, L.P. (1997). Molecular mechanism of actin-dependent retrograde flow in lamellipodia of motile cells. Front Biosci 2, d260d270.Google Scholar
de Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci U S A 106, 21592164. https://doi.org/10.1073/pnas.0809567106.Google Scholar
de Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6, 695704. https://doi.org/10.1038/nnano.2011.161.CrossRefGoogle ScholarPubMed
Domingo, J.L., Llobet, J.M., Tomas, J.M. & Corbella, J. (1987). Acute toxicity of uranium in rats and mice. Bull Environ Contam Toxicol 39, 168174.Google Scholar
Dukes, M.J., Peckys, D.B. & de Jonge, N. (2010). Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid. ACS Nano 4, 41104116. https://doi.org/10.1021/nn1010232.CrossRefGoogle ScholarPubMed
Egerton, R.F. (2015). Outrun radiation damage with electrons? Adv Struct Chem Imaging 1. https://doi.org/10.1186/s40679-014-0001-3.Google Scholar
Ellington, A.D. & Szostak, J.W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818822. https://doi.org/10.1038/346818a0.Google Scholar
Fields, P.A. (1984). Intracellular localization of relaxin in membrane-bound granules in the pregnant rat luteal cell. Biol Reprod 30, 753762.Google Scholar
Fiester, S.E., Helfinstine, S.L., Redfearn, J.C., Uribe, R.M. & Woolverton, C.J. (2012). Electron beam irradiation dose dependently damages the bacillus spore coat and spore membrane. Int J Microbiol 2012, 579593. https://doi.org/10.1155/2012/579593.Google Scholar
Garuti, R., Jones, C., Li, W.P., Michaely, P., Herz, J., Gerard, R.D., Cohen, J.C. & Hobbs, H.H. (2005). The modular adaptor protein autosomal recessive hypercholesterolemia (ARH) promotes low density lipoprotein receptor clustering into clathrin-coated pits. J Biol Chem 280, 4099641004. https://doi.org/10.1074/jbc.M509394200.Google Scholar
Gauthier, N.C., Masters, T.A. & Sheetz, M.P. (2012). Mechanical feedback between membrane tension and dynamics. Trends Cell Biol 22, 527535. https://doi.org/10.1016/j.tcb.2012.07.005.Google Scholar
Glaeser, R.M. (2012). Electron microscopy of biological specimens in liquid water. Biophys J 103, 163166. https://doi.org/10.1016/j.bpj.2012.05.042.Google Scholar
Goldberg, M.W. & Allen, T.D. (1992). High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J Cell Biol 119, 14291440.CrossRefGoogle Scholar
Gray, E.G. (1959). Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93, 420433.Google Scholar
Gumbiner, B.M. (1996). Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell 84, 345357. https://doi.org/10.1016/S0092-8674(00)81279-9.CrossRefGoogle ScholarPubMed
Hell, S.W. & Wichmann, J. (1994). Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19, 780782.Google Scholar
Isaacson, M., Johnson, D. & Crewe, A.V. (1973). Electron beam excitation and damage of biological molecules; its implications for specimen damage in electron microscopy. Radiat Res 55, 205224.Google Scholar
Javier, D.J., Nitin, N., Levy, M., Ellington, A. & Richards-Kortum, R. (2008). Aptamer-targeted gold nanoparticles as molecular-specific contrast agents for reflectance imaging. Bioconjugate Chem 19, 13091312. https://doi.org/10.1021/Bc8001248.Google Scholar
Jena, B.P. (2008). Intracellular Organelle Dynamics at nm Resolution. Method Cell Biol 90, 1937. https://doi.org/10.1016/S0091-679x(08)00802-9.Google Scholar
Jones, S.A., Shim, S.H., He, J. & Zhuang, X. (2011). Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8, 499508. https://doi.org/10.1038/nmeth.1605.Google Scholar
Keskin, S., Besztejan, S., Kassier, G., Manz, S., Bücker, R., Riekeberg, S., Trieu, H.K., Rentmeister, A. & Miller, R.J. (2015). Visualization of Multimerization and Self-Assembly of DNA- Functionalized Gold Nanoparticles Using In-Liquid Transmission Electron Microscopy. J Phys Chem Lett 6, 44874492. https://doi.org/10.1021/acs.jpclett.5b02075.Google Scholar
Kim, D., Jeong, Y.Y. & Jon, S. (2010). A Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer. ACS Nano 4, 36893696. https://doi.org/10.1021/Nn901877h.Google Scholar
Liu, H., Rajasekaran, A.K., Moy, P., Xia, Y., Kim, S., Navarro, V., Rahmati, R. & Bander, N.H. (1998). Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res 58, 40554060.Google Scholar
Liu, K.L., Wu, C.C., Huang, Y.J., Peng, H.L., Chang, H.Y., Chang, P., Hsu, L. & Yew, T.R. (2008). Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip 8, 19151921. https://doi.org/10.1039/b804986f.CrossRefGoogle ScholarPubMed
Low, S.H., Chapin, S.J., Wimmer, C., Whiteheart, S.W., Komuves, L.G., Mostov, K.E. & Weimbs, T. (1998). The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells. J Cell Biol 141, 15031513.CrossRefGoogle ScholarPubMed
Lupold, S.E., Hicke, B.J., Lin, Y. & Coffey, D.S. (2002). Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res 62, 40294033.Google Scholar
McDowall, A.W., Chang, J.J., Freeman, R., Lepault, J., Walter, C.A. & Dubochet, J. (1983). Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J Microsc 131, 19.Google Scholar
McLaughlin, A.I.G., Milton, R. & Kenneth, M.A.P. (1946). Toxic Manifestations of Osmium Tetroxide. Br J Ind Med 3, 183186.Google Scholar
Mirkin, C.A., Letsinger, R.L., Mucic, R.C. & Storhoff, J.J. (1996). A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607609. https://doi.org/10.1038/382607a0.Google Scholar
Mueller, C., Harb, M., Dwyer, J.R. & Miller, R.J.D. (2013). Nanofluidic cells with controlled pathlength and liquid flow for rapid, high-resolution in situ imaging with electrons. J Phys Chem Lett 4, 23392347. https://doi.org/10.1021/jz401067k.Google Scholar
Muller, D.J. & Dufrene, Y.F. (2011). Atomic force microscopy: a nanoscopic window on the cell surface. Trends Cell Biol 21, 461469. https://doi.org/10.1016/j.tcb.2011.04.008.Google Scholar
Pal, A., Severin, F., Hopfner, S. & Zerial, M. (2008). Regulation of endosome dynamics by Rab5 and Huntingtin-HAP40 effector complex in physiological versus pathological conditions. Method Enzymol 438, 239257. https://doi.org/10.1016/S0076-6879(07)38017-8.Google Scholar
Park, J., Park, H., Ercius, P., Pegoraro, A.F., Xu, C., Kim, J.W., Han, S.H. & Weitz, D.A. (2015). Direct Observation of Wet Biological Samples by Graphene Liquid Cell Transmission Electron Microscopy. Nano Lett 15, 47374744. https://doi.org/10.1021/acs.nanolett.5b01636.Google Scholar
Parsons, D.F. (1974). Structure of wet specimens in electron microscopy. Improved environmental chambers make it possible to examine wet specimens easily. Science 186, 407414. https://doi.org/10.1126/science.186.4162.407.Google Scholar
Parsons, D.F., Uydess, I., Subjeck, J., Wray, G. & Matricar, V.R. (1972). High-Voltage Electron-Microscopy of Wet Whole Cancer and Normal Cells - Visualization of Cytoplasmic Structures and Surface Projections. Biochim Biophys Acta 290, 110111. https://doi.org/10.1016/0005-2736(72)90056-9.Google Scholar
Peckys, D.B., Bandmann, V. & de Jonge, N. (2014). Correlative fluorescence and scanning transmission electron microscopy of quantum dot-labeled proteins on whole cells in liquid. Methods Cell Biol 124, 305322. https://doi.org/10.1016/B978-0-12-801075-4.00014-8.Google Scholar
Peckys, D.B. & de Jonge, N. (2011). Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy. Nano Lett 11, 17331738. https://doi.org/10.1021/nl200285r.Google Scholar
Peckys, D.B. & de Jonge, N. (2014). Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. Microsc Microanal 20, 346365. https://doi.org/10.1017/S1431927614000099.Google Scholar
Peckys, D.B., Mazur, P., Gould, K.L. & de Jonge, N. (2011). Fully hydrated yeast cells imaged with electron microscopy. Biophys J 100, 25222529. https://doi.org/10.1016/j.bpj.2011.03.045.Google Scholar
Pohlmann, E.S., Patel, K., Guo, S., Dukes, M.J., Sheng, Z. & Kelly, D.F. (2015). Real-time visualization of nanoparticles interacting with glioblastoma stem cells. Nano Lett 15, 23292335. https://doi.org/10.1021/nl504481k.Google Scholar
Rappoport, J.Z. & Simon, S.M. (2003). Real-time analysis of clathrin-mediated endocytosis during cell migration. J Cell Sci 116, 847855.CrossRefGoogle ScholarPubMed
Reynolds, E.S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17, 208212.Google Scholar
Rust, M.J., Bates, M. & Zhuang, X.W. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3, 793795. https://doi.org/10.1038/Nmeth929.Google Scholar
Sabatini, D.D., Bensch, K. & Barrnett, R.J. (1963). Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17, 1958.Google Scholar
Shafaq-Zadah, M., Gomes-Santos, C.S., Bardin, S., Maiuri, P., Maurin, M., Iranzo, J., Gautreau, A., Lamaze, C., Caswell, P., Goud, B., et al. (2016). Persistent cell migration and adhesion rely on retrograde transport of beta1 integrin. Nat Cell Biol 18, 5464. https://doi.org/10.1038/ncb3287.Google Scholar
Shao, L., Kner, P., Rego, E.H. & Gustafsson, M.G.L. (2011). Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8, 10441104. https://doi.org/10.1038/Nmeth.1734.Google Scholar
Sigismund, S., Argenzio, E., Tosoni, D., Cavallaro, E., Polo, S. & Di Fiore, P.P. (2008). Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell 15, 209219. https://doi.org/10.1016/j.devcel.2008.06.012.Google Scholar
Stenn, K. & Bahr, G.F. (1970). Specimen damage caused by the beam of the transmission electron microscope, a correlative reconsideration. J Ultrastruct Res 31, 526550.Google Scholar
Stokes, D.J., Rea, S.M., Best, S.M. & Bonfield, W. (2003). Electron microscopy of mammalian cells in the absence of fixing, freezing, dehydration, or specimen coating. Scanning 25, 181184.Google Scholar
Tuerk, C. & Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505510.Google Scholar
Watson, M.L. (1958). Staining of tissue sections for electron microscopy with heavy metals. II. Application of solutions containing lead and barium. J Biophys Biochem Cytol 4, 727730.Google Scholar
Zanacchi, F.C., Lavagnino, Z., Donnorso, M.P., Del Bue, A., Furia, L., Faretta, M. & Diaspro, A. (2011). Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8, 10471104. https://doi.org/10.1038/Nmeth.1744.Google Scholar
Supplementary material: File

Besztejan supplementary material

Besztejan supplementary material 1

Download Besztejan supplementary material(File)
File 2.5 MB

Besztejan supplementary material

Besztejan supplementary material 2

Download Besztejan supplementary material(Video)
Video 38.7 MB