Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T14:15:30.807Z Has data issue: false hasContentIssue false

Video-Based Tracking of Single Molecules Exhibiting Directed In-Frame Motion

Published online by Cambridge University Press:  30 July 2012

M. Yavuz Yüce*
Affiliation:
Department of Physics, Koç University, Istanbul, Turkey
Alexandr Jonáš
Affiliation:
Department of Physics, Koç University, Istanbul, Turkey
Alper Kiraz
Affiliation:
Department of Physics, Koç University, Istanbul, Turkey
Alper T. Erdoğan
Affiliation:
Department of Electrical Engineering, Koç University, Istanbul, Turkey
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

Trajectories of individual molecules moving within complex environments such as cell cytoplasm and membranes or semiflexible polymer networks provide invaluable information on the organization and dynamics of these systems. However, when such trajectories are obtained from a sequence of microscopy images, they can be distorted due to the fact that the tracked molecule exhibits appreciable directed motion during the single-frame acquisition. We propose a new model of image formation for mobile molecules that takes the linear in-frame motion into account and develop an algorithm based on the maximum likelihood approach for retrieving the position and velocity of the molecules from single-frame data. The position and velocity information obtained from individual frames are further fed into a Kalman filter for interframe tracking of molecules that allows prediction of the trajectory of the molecule and further improves the precision of the position and velocity estimates. We evaluate the performance of our algorithm by calculations of the Cramer-Rao Lower Bound, simulations, and model experiments with a piezo-stage. We demonstrate tracking of molecules moving as fast as 7 pixels/frame (12.6 μm/s) within a mean error of 0.42 pixel (37.43 nm).

Type
Biological Applications: Techniques, Software, and Equipment Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abraham, A.V., Ram, S., Chao, J., Ward, E.S. & Ober, R.J. (2009). Quantitative study of single molecule location estimation techniques. Opt Express 17, 2335223373.CrossRefGoogle ScholarPubMed
Abraham, A.V., Ram, S., Chao, J., Ward, E.S. & Ober, R.J. (2010). Comparison of estimation algorithms in single-molecule localization. Proceedings of SPIE, vol. 7570, 757004-1. CrossRefGoogle ScholarPubMed
Anthony, S.M. & Granick, S. (2009). Image analysis with rapid and accurate two-dimensional Gaussian fitting. Langmuir 25, 81528160.CrossRefGoogle ScholarPubMed
Cheezum, M.K., Walker, W.F. & Guilford, W.H. (2001). Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81, 23782388.CrossRefGoogle ScholarPubMed
Eldar, Y.C. (2008). Rethinking biased estimation: Improving maximum likelihood and the Cramer-Rao bound. Found Trends Signal Process 1, 305449.CrossRefGoogle Scholar
Evans, E. (2001). Probing the relation between force—lifetime—and chemistry in single molecular bonds. Annu Rev Biophys Biomol Struct 30, 105128.CrossRefGoogle ScholarPubMed
Genovesio, A. & Olivo-Marin, J.-C. (2003). Tracking fluorescent spots in biological video microscopy. Proceedings of SPIE, vol. 4964, pp. 98105.CrossRefGoogle Scholar
Hamamatsu. (2009). EM-CCD Technical Note. Technical report. Hamamatsu Photonics K.K., Systems Division. Google Scholar
Ho, W. (2002). Single-molecule chemistry. J Chem Phys 117, 1103311061.CrossRefGoogle Scholar
Hoffmann, A., Nettels, D., Clark, J., Borgia, A., Radford, S.E., Clarke, J. & Schuler, B. (2011). Quantifying heterogeneity and conformational dynamics from single molecule FRET of diffusing molecules: Recurrence analysis of single particles (RASP). Phys Chem Chem Phys 13, 18571871.CrossRefGoogle ScholarPubMed
Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. & Ha, T. (2008). Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77, 5176.CrossRefGoogle ScholarPubMed
Kailath, T., Sayed, A.H. & Hassibi, B. (2000). Linear Estimation. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Kay, S.M. (1993). Fundamentals of Statistical Signal Processing, Volume 1: Estimation Theory. Upper Saddle River, NJ: Pearson Education.Google Scholar
Kues, T., Peters, R. & Kubitscheck, U. (2001). Visualization and tracking of single protein molecules in the cell nucleus. Biophys J 80, 29542967.CrossRefGoogle ScholarPubMed
Moerner, W.E. (2007). New directions in single-molecule imaging and analysis. Proc Nat Acad Sci USA 104, 1259612602.CrossRefGoogle ScholarPubMed
Ober, R.J., Ram, S. & Ward, E.S. (2004). Localization accuracy in single-molecule microscopy. Biophys J 86, 11851200.CrossRefGoogle ScholarPubMed
Pampaloni, F., Lattanzi, G., Jonas, A., Surrey, T., Frey, E. & Florin, E.L. (2006). Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length. Proc Nat Acad Sci USA 103, 1024810253.CrossRefGoogle ScholarPubMed
Pralle, A., Keller, P., Florin, E.L., Simons, K. & Horber, J.K.H. (2000). Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148, 9971007.CrossRefGoogle ScholarPubMed
Saxton, M.J. & Jacobson, K. (1997). Single-particle tracking: Applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26, 373399.CrossRefGoogle ScholarPubMed
Schmidt, T., Schutz, G.J., Gruber, H.J. & Schindler, H. (1996). Local stoichiometries determined by counting individual molecules. Anal Chem 68, 43974401.CrossRefGoogle Scholar
Schuster, J., Cichos, F. & Borczyskowski, C. (2002). Diffusion measurements by single-molecule spot-size analysis. J Phys Chem A 106, 54035406.CrossRefGoogle Scholar
Schutz, G.J., Sonnleitner, M., Hinterdorfer, P. & Schindler, H. (2000). Single molecule microscopy of biomembranes. Mol Membr Biol 17, 1729.CrossRefGoogle ScholarPubMed
Smal, I., Niessen, W. & Meijering, E. (2008). A new detection scheme for multiple object tracking in florescence microscopy by joint probabilistic data association filtering. Int Symp Biomed Imag: From Nano to Macro (ISBI-08), Paris, France. pp. 264267.Google Scholar
Smith, C.S., Joseph, N., Rieger, B. & Lidke, K.A. (2010). Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7, 373375.CrossRefGoogle ScholarPubMed
Thompson, R.E., Larson, D.R. & Webb, W.W. (2002). Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82, 27752783.CrossRefGoogle ScholarPubMed
Usman, M., Hero, A., Fessler, J. & Rogers, W. (1993). Bias-variance tradeoffs analysis using uniform CR bound for a SPECT system. Nuclear Science Symposium and Medical Imaging Conference, 1993 IEEE Conference Record. vol. 3, pp. 1463–1467. CrossRefGoogle Scholar
Wong, Y., Lin, Z.P. & Ober, R.J. (2011). Limit of the accuracy of parameter estimation for moving single molecules imaged by fluorescence microscopy. IEEE Trans Signal Process 59, 895911.CrossRefGoogle ScholarPubMed
Wu, P.H., Agarwal, A., Hess, H., Khargonekar, P.P. & Tseng, Y. (2010). Analysis of video-based microscopic particle trajectories using Kalman filtering. Biophys J 98, 28222830.CrossRefGoogle ScholarPubMed
Yorulmaz, M., Kiraz, A. & Demirel, A.L. (2009). Motion of single terrylene molecules in confined channels of poly(butadiene)-poly(ethylene oxide) diblock copolymer. J Phys Chem B 113, 96409643.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Yüce Supplementary Material

Supplementary Material 1

Download Yüce Supplementary Material(PDF)
PDF 62 KB
Supplementary material: PDF

Yüce Supplementary Material

Supplementary Material 2

Download Yüce Supplementary Material(PDF)
PDF 645.3 KB