Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-31T23:21:55.193Z Has data issue: false hasContentIssue false

Vector Piezoresponse Force Microscopy

Published online by Cambridge University Press:  16 May 2006

Sergei V. Kalinin
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Bldg. 3025, MS 6030, 1 Bethel Valley Rd., Oak Ridge, TN 37831, USA
Brian J. Rodriguez
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Bldg. 3025, MS 6030, 1 Bethel Valley Rd., Oak Ridge, TN 37831, USA Department of Physics, North Carolina State University, 2700 Stinson Drive, Box 8202, Raleigh, NC 27695, USA
Stephen Jesse
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Bldg. 3025, MS 6030, 1 Bethel Valley Rd., Oak Ridge, TN 37831, USA
Junsoo Shin
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Bldg. 3025, MS 6030, 1 Bethel Valley Rd., Oak Ridge, TN 37831, USA Department of Physics and Astronomy, University of Tennessee, 1408 Circle Drive, Knoxville, TN 37996, USA
Arthur P. Baddorf
Affiliation:
Condensed Matter Sciences Division, Oak Ridge National Laboratory, Bldg. 3025, MS 6030, 1 Bethel Valley Rd., Oak Ridge, TN 37831, USA
Pradyumna Gupta
Affiliation:
Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015, USA
Himanshu Jain
Affiliation:
Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015, USA Center for Optical Technologies, Lehigh University, 5 East Packer Ave., Bethlehem, PA 18015, USA
David B. Williams
Affiliation:
Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015, USA
Alexei Gruverman
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, 2410 Campus Shore Drive, Raleigh, NC 27695, USA
Get access

Abstract

A novel approach for nanoscale imaging and characterization of the orientation dependence of electromechanical properties—vector piezoresponse force microscopy (Vector PFM)—is described. The relationship between local electromechanical response, polarization, piezoelectric constants, and crystallographic orientation is analyzed in detail. The image formation mechanism in vector PFM is discussed. Conditions for complete three-dimensional (3D) reconstruction of the electromechanical response vector and evaluation of the piezoelectric constants from PFM data are set forth. The developed approach can be applied to crystallographic orientation imaging in piezoelectric materials with a spatial resolution below 10 nm. Several approaches for data representation in 2D-PFM and 3D-PFM are presented. The potential of vector PFM for molecular orientation imaging in macroscopically disordered piezoelectric polymers and biological systems is discussed.

Type
MICROSCOPY TECHNIQUES
Copyright
© 2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abplanalp, M. (2001). Piezoresponse Scanning Force Microscopy of Ferroelectric Domains. Ph.D. Thesis, Zurich: Swiss Federal Institute of Technology.
Alexe, M. & Gruverman, A. (2004). Ferroelectrics at Nanoscale: Scanning Probe Microscopy Approach. New York: Springer Verlag.
Bdikin, I.K., Shvartsman, V.V., Kim, S.-H., Herrero, J.M., & Kholkin, A.L. (2004). Frequency-dependent electromechanical response in ferroelectric materials measured via piezoresponse force microscopy. Mat Res Soc Symp Proc 784, C11.3.Google Scholar
Cady, W.G. (1964). Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals. New York: Dover Publications.
Christman, J.A., Woolcott, R.R., Kingon, A.I., & Nemanich, R.J. (1998). Piezoelectric measurements with atomic force microscopy. Appl Phys Lett 73, 38513853.Google Scholar
Du, X., Belegundu, U., & Uchino, K. (1997). Crystal orientation dependence of piezoelectric properties in lead zirconate titanate: Theoretical expectation for thin films. Jpn J Appl Phys 36, 55805587.Google Scholar
Eng, L.M., Grafstrom, S., Loppacher, Ch., Schlaphof, F., Trogisch, S., Roelofs, A., & Waser, R. (2001). 3-Dimensional electric field probing of ferroelectrics on the nanometer scale using scanning force microscopy. Adv Solid State Phys 41, 287298.Google Scholar
Eng, L.M., Güntherodt, H.-J., Rosenman, G., Skliar, A., Oron, M., Katz, M., & Eger, D. (1998). Nondestructive imaging and characterization of ferroelectric domains in periodically poled crystals. J Appl Phys 83, 59735977.Google Scholar
Eng, L.M., Güntherodt, H.-J., Schneider, G.A., Kopke, U., & Saldana, J.M. (1999). Nanoscale reconstruction of surface crystallography from three-dimensional polarization distribution in ferroelectric barium-titanate ceramics. Appl Phys Lett 74, 233235.Google Scholar
Ganpule, C. (2001). Nanoscale phenomena in ferroelectric thin films. Ph.D. thesis. College Park: University of Maryland.
Ganpule, C.S., Stanishevsky, A., Aggarwal, S., Melngailis, J., Williams, E., Ramesh, R., Joshi, V., & Paz de Araujo, C.A. (1999). Scaling of ferroelectric and piezoelectric properties in Pt/SrBi2Ti2O9/Pt thin films. Appl Phys Lett 75, 38743876.Google Scholar
Gruverman, A. (2004). Ferroelectric nanodomains. In Encyclopedia of Nanoscience and Nanotechnology, Nalwa, H.S. (Ed.), vol. 3, pp. 359375. Los Angeles: American Scientific Publishers.
Gruverman, A., Auciello, O., & Tokumoto, H. (1996a). Scanning force microscopy for the study of domain structure in ferroelectric thin films. J Vac Sci Technol B 14, 602605.Google Scholar
Gruverman, A., Auciello, O., & Tokumoto, H. (1996b). Scanning force microscopy for the study of domain structure in ferroelectric thin films. Appl Phys Lett 69, 31913193.Google Scholar
Gruverman, A., Auciello, O., & Tokumoto, H. (1998). Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy. Annu Rev Mater Sci 28, 101123.Google Scholar
Gupta, P., Jain, H., Williams, D.B., Shin, J., Baddorf, A.P., & Kalinin, S.V. (2005). Observation of ferroelectricity in a confined crystallite using electron-backscattered diffraction and piezoresponse force microscopy. Appl Phys Lett 87, 172903/13.Google Scholar
Güthner, P. & Dransfeld, K. (1992). Local poling of ferroelectric polymers by scanning force microscopy. Appl Phys Lett 61, 11371140.Google Scholar
Harnagea, C. (2001). Local piezoelectric response and domian structures in ferroelectric thin films investigated by voltage modulated force microscopy. Dr. Rer. Nat. thesis, Halle: Martin-Luther-Universität Halle Wittenberg.
Harnagea, C., Alexe, M., Hesse, D., & Pignolet, A. (2003). Contact resonances in voltage-modulated force microscopy. Appl Phys Lett 83, 338341.Google Scholar
Harnagea, C., Pignolet, A., Alexe, M., & Hesse, H. (2001). Piezoresponse scanning force microscopy: What quantitative information can we really get out of piezoresponse measurements on ferroelectric thin films. Integrated Ferroelectrics 38, 667673.Google Scholar
Hong, S. (2004). Nanoscale Phenomena in Ferroelectric Thin Films. Boston: Kluwer Academic Publishers.
Hong, S., Woo, J., Shin, H., Jeon, J.U., Pak, Y.E., Colla, E.L., Setter, N., Kim, E., & No, K. (2001). Principle of ferroelectric domain imaging using atomic force microscope. J Appl Phys 89, 13771386.Google Scholar
Huey, B.D., Ramanujan, C., Bobji, M., Blendell, J., White, G., Szoszkiewicz, R., & Kulik, A. (2004). The importance of distributed loading and cantilever angle in piezo-force microscopy. J Electroceramics 13, 287291.Google Scholar
Jeon, S., Braiman, Y., & Thundat, T. (2004). Cross talk between bending, twisting, and buckling modes of three types of microcantilever sensors. Rev Sci Instrum 75, 48414845.Google Scholar
Kalinin, S.V. (2002). Nanoscale phenomena at oxide surfaces and interfaces by scanning probe microscopy. Ph.D. Thesis, Philadelphia, PA: University of Pennsylvania.
Kalinin, S.V. & Bonnell, D.A. (2001). Local potential and polarization screening on ferroelectric surfaces. Phys Rev B 63, 125411/113.Google Scholar
Kalinin, S.V. & Bonnell, D.A. (2002). Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys Rev B 65, 125408/111.Google Scholar
Kalinin, S.V. & Bonnell, D.A. (2004). Electric scanning probe imaging and modification of ferroelectric surfaces. In Ferroelectrics at Nanoscale: Scanning Probe Microscopy Approach, Alexe, M. & and Gruverman, A. (Eds.), pp. 143. New York: Springer Verlag.
Kalinin, S.V., Karapetian, E., & Kachanov, M. (2004). Nanoelectromechanics of piezoresponse force microscopy. Phys Rev B 70, 184101/124.Google Scholar
Kalinin, S.V., Rodriguez, B.J., Shin, J., Jesse, S., Grichko, V., Thundat, T., Baddorf, A.P., & Gruverman, A. (2006). Bioelectromechanical imaging by scanning probe microscopy: Galvani's experiment at the nanoscale. Ultramicroscopy 106, 334340.Google Scholar
Karapetian, E., Kachanov, M., & Kalinin, S.V. (2005). Nanoelectromechanics of piezoelectric indentation and applications to scanning probe microscopies of ferroelectric materials. Phil Mag 85, 10171051.Google Scholar
Karapetian, E., Kachanov, M., & Sevostianov, I. (2002). The principle of correspondence between elastic and piezoelectric problems. Arch Appl Mech 72, 564587.Google Scholar
Li, J.-H., Chen, L., Nagarajan, V., Ramesh, R., & Roytburd, A.L. (2004). Finite element modeling of piezoresponse in nanostructured ferroelectric films. Appl Phys Lett 84, 26262628.Google Scholar
More, N., Ramond, M., & Tordjeman, Ph. (2005). Cantilever calibration for nanofriction experiments with atomic force microscope. Appl Phys Lett 86, 163103/13.Google Scholar
Munoz-Saldana, J., Hoffmann, M.J., & Schneider, G.A. (2003). Ferroelectric domains in coarse-grained lead zirconate titanate ceramics characterized by scanning force microscopy. J Mater Res 18, 17771786.Google Scholar
Nagarajan, V., Roytburd, A., Stanishevsky, A., Prasertchoung, S., Zhao, T., Chen, L., Melngailis, J., Auciello, O., & Ramesh, R. (2003). Dynamics of ferroelastic domains in ferroelectric thin films. Nat Mater 2, 4347.Google Scholar
Newnham, R.E. (2005). Properties of Materials: Anisotropy, Symmetry, Structure. New York: Oxford University Press.
Nye, J.F. (1985). Physical Properties of Crystals. New York: Oxford University Press.
Ogletree, D.F., Carpick, R.W., & Salmeron, M. (1996). Calibration of frictional forces in atomic force microscopy. Rev Sci Instrum 67, 32983306.Google Scholar
Ouyang, J., Yang, S.Y., Chen, L., Ramesh, R., & Roytburd, A.L. (2004). Orientation dependence of the converse piezoelectric constants for epitaxial single domain ferroelectric films. Appl Phys Lett 85, 278280.Google Scholar
Peter, F., Rüdiger, A., Waser, R., Szot, K., & Reichenberg, B. (2005). Comparison of in-plane and out-of-plane optical amplification in AFM measurements. Rev Sci Instrum 76, 046101/13.Google Scholar
Rabe, U., Kopycinska, M., Hiserkorn, S., Munoz-Saldana, J., Schneider, G.A., & Arnold, W. (2002). High-resolution characterization of piezoelectric ceramics by ultrasonic scanning force microscopy techniques. J Phys D 35, 26212635.Google Scholar
Rodriguez, B.J., Gruverman, A., Kingon, A.I., Nemanich, R.J., & Cross, J.S. (2004). Three-dimensional high-resolution reconstruction of polarization in ferroelectric capacitors by piezoresponse force microscopy. J Appl Phys 95, 19581962.Google Scholar
Roelofs, A., Böttger, U., Waser, R., Schlaphof, F., Trogisch, S., & Eng, L.M. (2000). Differentiating 180° and 90° switching of ferroelectric domains with three-dimensional piezoresponse force microscopy. Appl Phys Lett 77, 34443446.Google Scholar
Sarid, D. (1991). Scanning Force Microscopy. New York: Oxford University Press.
Smolenskii, G.A., Bokov, V.A., Isupov, V.A., Krainik, N.N., Pasynkov, R.E., & Sokolov, A.I. (1984). Ferroelectrics and Related Materials. New York: Cordon and Breach.
Tiedke, S. & Schmitz, T. (2004). Electrical characterization of nanoscale ferroelectric structures. In Ferroelectrics at Nanoscale: Scanning Probe Microscopy Approach, Alexe & M. and Gruverman, A. (Eds.), pp. 87114. New York: Springer Verlag.