Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T15:58:49.309Z Has data issue: false hasContentIssue false

Uranium Microdistribution in Renal Cortex of Rats after Chronic Exposure: A Study by Secondary Ion Mass Spectrometry Microscopy

Published online by Cambridge University Press:  05 January 2012

Christine Tessier*
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), DRPH, SDI, LRC, BP 17, F-92262 Fontenay aux Roses Cedex, France
David Suhard
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), DRPH, SDI, LRC, BP 17, F-92262 Fontenay aux Roses Cedex, France
François Rebière
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), DRPH, SDI, LRC, BP 17, F-92262 Fontenay aux Roses Cedex, France
Maâmar Souidi
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), DRPH, SRBE, LRTOX, BP 17, F-92262 Fontenay aux Roses Cedex, France
Isabelle Dublineau
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), DRPH, SRBE, LRTOX, BP 17, F-92262 Fontenay aux Roses Cedex, France
Michelle Agarande
Affiliation:
Institut de Radioprotection et de Sûreté Nucléaire (IRSN), DRPH, SDI, LRC, BP 17, F-92262 Fontenay aux Roses Cedex, France
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

For a few years, the biological effects on ecosystems and the public of the bioaccumulation of radionuclides in situations of chronic exposures have been studied. This work, in keeping with the ENVIRHOM French research program, presents the uranium microdistribution by secondary ion mass spectrometry (SIMS) technique in the renal cortex of rats following chronic exposure to this low level element in the drinking water (40 mg/L) as a function to exposure duration (6, 9, 12, and 18 months). The SIMS mass spectra and 238U+ ion images produced with a SIMS CAMECA 4F-E7 show the kinetic of uranium accumulation in the different structures of the kidney. For the rats contaminated up to 12 months, the radioelement is mainly fixed in the proximal tubules; then after 18 exposure months, uranium is detected in all the segments of the nephron. This work has also shown that ion microscopy is an analytical method to detect trace elements and give elemental cartography at the micrometer scale.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benninghoven, A., Rüdenauer, F.G. & Werner, H.W. (1987). Secondary ion mass spectrometry. Chemical Analysis, vol. 86. New York: John Wiley.Google Scholar
Berradi, H., Bertho, J.M., Dudoignon, N., Mazur, A., Grandcolas, L., Baudelin, C., Grison, S., Voisin, P., Gourmelon, P. & Dublineau, I. (2008). Renal anemia induced by chronic ingestion of depleted uranium in rats. Toxicol Sci 103(2), 397408.CrossRefGoogle ScholarPubMed
Bleise, A., Danesi, P.R. & Burkart, W. (2003). Properties, use and health effects of depleted uranium (DU): A general overview. J Environ Radioact 64, 93112.CrossRefGoogle ScholarPubMed
Castaing, R. & Slodzian, G. (1981). Analytical microscopy by secondary ion imaging techniques. J Phys E 14(10), 11191127.CrossRefGoogle Scholar
Chandrajith, R., Seneviratna, S., Wickramaarachchi, K., Attanayake, T., Aturaliya, T.N.C. & Dissanayake, C.B. (2010). Natural radionuclides and trace elements in rice field soils in relation to fertilizer application: Study of a chronic kidney disease in Sri Lanka. Environ Earth Sci 60, 193201.CrossRefGoogle Scholar
Clerc, J., Fourré, C. & Fragu, P. (1997). SIMS microscopy: Methodology, problems and perspectives in mapping drugs and nuclear medecine compounds. Cell Biol Int 21(10), 115.CrossRefGoogle ScholarPubMed
Craft, E.S., Abu-Qare, A.W., Flaherty, M.M., Garofolo, M.C., Rincavage, H.L. & Abou-Donia, M.B. (2004). Depleted and natural uranium: Chemistry and toxicological effects. J Toxicol Environ Health B 7, 297317.CrossRefGoogle ScholarPubMed
Donnadieu-Claraz, M., Bonnehorgne, M., Dhieux, B., Maubert, C., Cheynet, M., Paquet, F. & Gourmelon, P. (2007). Chronic exposure to uranium leads to iron accumulation in rat kidney cells. Radiat Res 167, 454464.CrossRefGoogle ScholarPubMed
Frelon, S., Guipaud, O., Mounicou, S., Lobinski, R., Delissen, O. & Paquet, F. (2009). In vivo screening of proteins likely to bind uranium in exposed rat kidney. Radiochim Acta 97, 367373.CrossRefGoogle Scholar
Gilman, A.P., Moss, M.A., Villeneuve, D.C., Secours, V.E., Yagminas, A.P., Tracy, B.L., Quinn, J.M., Long, G. & Valli, V.E. (1998a). Uranyl nitrate: 91-day exposure and recovery studies in the male New Zealand White rabbit. Toxicol Sci 41, 138151.CrossRefGoogle ScholarPubMed
Gilman, A.P., Villeneuve, D.C., Secours, V.E., Yagminas, A.P., Tracy, B.L., Quinn, J.M., Valli, V.E., Willes, R.J. & Moss, M.A. (1998b). Uranyl nitrate: 28-day and 91-day toxicity studies in the Sprague-Dawley rat. Toxicol Sci 41, 117128.Google ScholarPubMed
Gilman, A.P., Villeneuve, D.C., Secours, V.E., Yagminas, A.P., Tracy, B.L., Quinn, J.M., Valli, V.E., Willes, R.J. & Moss, M.A. (1998c). Uranyl nitrate: 91-day toxicity studies in the New Zealand White rabbit. Toxicol Sci 41, 129137.CrossRefGoogle ScholarPubMed
Grignon, N., Halpern, S., Jeusset, J., Briançon, C. & Fragu, P. (1997). Localization of chemical elements in isotopes in the leaf of soybean (Glycin max) by secondary ion mass spectrometry: Critical choice of sample preparation procedure. J Microsc 186(1), 5166.CrossRefGoogle Scholar
Guerquin-Kern, J.L., Wu, T.D., Quintana, C. & Croisy, A. (2005). Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim Biophys Acta 1724, 228238.CrossRefGoogle ScholarPubMed
Haley, D.P. (1982). Morphologic changes in uranyl nitrate-induced acute renal failure in saline- and water-drinking rats. Lab Invest 46, 196208.Google ScholarPubMed
Hémadi, M., Ha-Duong, N.T., Plantevin, S., Vidaud, C. & El Hage Chahine, J.M. (2010). Can uranium follow the iron-acquisition pathway? Interaction of uranyl-loaded transferrin with receptor 1. J Biol Inorg Chem 15, 497504.CrossRefGoogle ScholarPubMed
Hidié, E., Petiet, A., Bourahla, K., Colas-Linhart, N., Slodzian, G., Dennebouy, R. & Galle, P. (2001). Microscopic distribution of iodine radioisotopes in the thyroid of the iodine deficient new-born rat: Insight concerning the Chernobyl accident. Cell Mol Biol 47(3), 403410.Google Scholar
Homma-Takeda, S., Terada, Y., Nakata, A., Sahoo, S.K., Yoshida, S., Ueno, S., Inoue, M., Iso, H., Ishikawa, T., Konishi, T., Imaseki, H. & Shimada, Y. (2009). Elemental imaging of kidneys of adult rats exposed to uranium acetate. Nucl Instrum Meth Phys Res B 267, 21672170.CrossRefGoogle Scholar
Kahn, E., Tessier, C., Lizard, G.A. & Petiet, A. (2002). Distribution of injected MRI contrast agents in mouse livers studied by confocal and SIMS microscopy. Anal Quant Cytol Histol 24(5), 295302.Google ScholarPubMed
Kurttio, P., Auvinen, A., Salonen, L., Saha, H., Pekkanen, J., Mäkeläinen, I., Väisänen, S.B., Penttilä, I.M. & Komulainen, H. (2002). Renal effects of uranium in drinking water. Environ Health Persp 110(4), 337342.CrossRefGoogle ScholarPubMed
Kurttio, P., Harmoinen, A., Saha, H., Salonen, L., Karpas, Z., Komulainen, H. & Auvinen, A. (2006a). Kidney toxicity of infested uranium from drinking water. Am J Kid Diseases 47(6), 972982.CrossRefGoogle Scholar
Kurttio, P., Salonen, L., Ilus, T., Pekkanen, J., Pukkala, E. & Auvinen, A. (2006b). Well water radioactivity and risk of cancers of the urany organs. Environ Res 102, 333338.CrossRefGoogle Scholar
Leggett, R.W. (1989). The behaviour and chemical toxicity of U in the kidney: A reassessment. Health Phys 57(3), 365383.CrossRefGoogle ScholarPubMed
Leggett, R.W. & Harrison, J.D. (1995). Fractional absorption of ingested uranium in humans. Health Phys 68(4), 484498.CrossRefGoogle ScholarPubMed
Limson Zamora, M., Tracy, B.L., Zielinski, J.M., Meyerhof, D.P. & Moss, M.A. (1998). Chronic ingestion of uranium in drinking water: A study of kidney bioeffects in humans. Toxicol Sci 48, 6877.CrossRefGoogle Scholar
Limson Zamora, M., Zielinski, J.M., Moody, G.B., Falcomer, R.A., Hunt, W.C. & Capello, K. (2009). Uranium in drinking water: Renal effects of long-term ingestion by aboriginal community. Arch Environ Occup Health 64(4), 228241.CrossRefGoogle Scholar
Linares, V., Bellés, M., Albina, M.L., Sirvent, J.J., Sanchez, D.J. & Domingo, J.L. (2006). Assessment of the pro-oxidant activity of uranium in kidney and testis of rats. Toxicol Lett 167, 152161.CrossRefGoogle ScholarPubMed
Magdo, H.S., Forman, J., Graber, N., Newman, B., Klein, K., Satlin, L., Amler, R.W., Winston, J.A. & Landrigan, P.J. (2007). Grand rounds: Nephrotoxicity in a young child exposed to uranium from contaminated well water. Environ Health Persp 115(8), 16281635.CrossRefGoogle Scholar
Mao, Y., Desmeules, M., Schaubel, D., Bérubé, D., Dyck, R., Brûlé, D. & Thomas, B. (1995). Inorganic components of drinking water and microalbuminuria. Environ Res 71, 135140.CrossRefGoogle ScholarPubMed
Michon, J., Frelon, S., Garnier, C. & Coppin, F. (2010). Determinations of uranium(VI) binding properties with some metalloproteins (transferrin, albumin, metallothionein and ferritin) by fluorescence quenching. J Fluoresc 20, 581590.CrossRefGoogle ScholarPubMed
Paquet, F., Houpert, P., Blanchardon, E., Delissen, O., Maubert, C., Dhieux, B., Moreels, A.M., Frelon, S., Voisin, P. & Gourmelon, P. (2006). Accumulation and distribution of uranium in rats after chronic exposure by ingestion. Health Phys 90(2), 139147.CrossRefGoogle ScholarPubMed
Prat, O., Vercouter, T., Ansoborlo, E., Fichet, P., Perret, P., Kurttio, P. & Salonen, L. (2009). Uranium speciation in drinking water from drilled wells in southern Finland and its potential links to health effects. Environ Sci Technol 43, 39413946.CrossRefGoogle ScholarPubMed
Rouas, C., Bensoussan, H., Suhard, D., Tessier, C., Grandcolas, L., Rebiere, F., Dublineau, I., Taouis, M., Pallardy, M., Lestaevel, P. & Gueguen, Y. (2010). Distribution of soluble uranium in the nuclear cell compartment at subtoxic concentrations. Chem Res Toxicol 23(12), 18831889.CrossRefGoogle ScholarPubMed
Sabolic, I. (2006). Common mechanisms in nephropathy induced by toxic metals. Nephron 104, 107114.CrossRefGoogle ScholarPubMed
Salonen, L. (1994). 238U series radionuclides as a source of increase radioactivity in groundwater originating from Finish bedrock. In Future Groundwater Resources at Risk, Sovery, J. & Suokko, T. (Eds.), pp. 7184. Publication 222. Wallingford, Oxfordshire, UK: IAHS Press.Google Scholar
Seldén, A.I., Lundholm, C., Edlund, B., Högdahl, C., Ek, B.M., Bergström, B.E. & Ohlson, C.G. (2009). Nephrotoxicity of uranium in drinking water from private drilled wells. Environ Res 109, 486494.CrossRefGoogle ScholarPubMed
Taulan, M., Paquet, F., Maubert, C., Delissen, O., Demaille, J. & Romey, C. (2004). Renal toxicogenomic response to a chronic uranyl nitrate insult in mice. Environ Health Persp 112(6), 16281635.CrossRefGoogle ScholarPubMed
Tessier, C., Suhard, D., Simon, O., Floriani, M., Rebière, F. & Jourdain, J.R. (2009). Detection and analysis of microdistribution of uranium in the gills of freshwater Corbicula fluminea by SIMS technique. Nucl Instrum Meth Phys Res B 267, 19311935.CrossRefGoogle Scholar
Tissandié, E., Guéguen, Y., Loboccaro, J.M.A., Grandcolas, L., Aigueperse, J., Gourmelon, P. & Souidi, M. (2008). Enriched uranium affects the expression of vitamin D receptor and retinoid X receptor in rat kidney. J Steroid Biochem Mol Biol 110, 263268.CrossRefGoogle ScholarPubMed
Tissandié, E., Guéguen, Y., Loboccaro, J.M.A., Grandcolas, L., Voisin, P., Aigueperse, J., Gourmelon, P. & Souidi, M. (2007). In vivo effects of chronic contamination with depleted uranium on vitamin D3 metabolism in rat. Biochim Biophys Acta 1770, 266272.CrossRefGoogle ScholarPubMed
Zhu, G., Xiang, X., Chen, X., Wang, L., Hu, H. & Weng, S. (2009). Renal dysfunction induced by long-term exposure to depleted uranium in rats. Arch Toxicol 83, 3746.CrossRefGoogle ScholarPubMed