Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T10:24:52.275Z Has data issue: false hasContentIssue false

Unveiling the Stable Nature of LiPON-associated Electrode/Electrolyte Interphases via Cryogenic Electron Microscopy

Published online by Cambridge University Press:  30 July 2021

Diyi Cheng
Affiliation:
University of California, San Diego, United States
Ryosuke Shimizu
Affiliation:
University of California, San Diego, United States
Jamie Weaver
Affiliation:
NIST, Material Measurement Laboratory, United States
Y. Shirley Meng
Affiliation:
University of California San Diego, La Jolla, California, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Many Detectors Make Lights Work: Advances in Microanalysis of Light Elements in Synthetic and Natural Materials
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Aurbach, D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89 (2000), 206218.CrossRefGoogle Scholar
Se, T. H. E., Electrolyte, M. & Batteries, T. O. L. The SEI model-application electrolyte. Elecrrochimica Acta. 40 (1995), 21972204.Google Scholar
Wang, A., Kadam, S., Li, H., Shi, S. & Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput. Mater. 4 (2018), 15.Google Scholar
Peled, E. The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model. J. Electrochem. Soc. 126 (1979), 2047.CrossRefGoogle Scholar
Aurbach, D. The Surface Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions. J. Electrochem. Soc. 141 (1994), 1.CrossRefGoogle Scholar
Li, J., Ma, C., Chi, M., Liang, C. & Dudney, N. J. Solid electrolyte: The key for high-voltage lithium batteries. Adv. Energy Mater. 5 (2015), 16.CrossRefGoogle Scholar
Yu, X. A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride. J. Electrochem. Soc. 144 (1997), 524.CrossRefGoogle Scholar
Wang, X., Zhang, M., Alvarado, J., Wang, S., Sina, M., Lu, B., Bouwer, J., Xu, W., Xiao, J., Zhang, J. G., et al. New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM. Nano Lett. 17 (2017), 76067612.Google ScholarPubMed
Singh, C. N., Butler, K. T., MacDonald, A. H., Piper, L. F. J. & Lee, W.-C. Dynamic disorder induced memristance in amorphous solids. (2019) arXiv:1908.08070.Google Scholar
Li, Y., Li, Y., Pei, A., Yan, K., Sun, Y., Wu, C. L., Joubert, L. M., Chin, R., Koh, A. L., Yu, Y., et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 358 (2017), 506510.CrossRefGoogle ScholarPubMed
Santos-Ortiz, R., Rojhirunsakool, T., Jha, J. K., Al Khateeb, S., Banerjee, R., Jones, K. S. & Shepherd, N. D. Analysis of the structural evolution of the SEI layer in FeF2 thin-film lithium-ion batteries upon cycling using HRTEM and EELS. Solid State Ionics 303 (2017), 103112.CrossRefGoogle Scholar
Cheng, D., Wynn, T. A., Wang, X., Wang, S., Zhang, M., Shimizu, R., Bai, S., Nguyen, H., Fang, C., Kim, M., et al. Unveiling the Stable Nature of the Solid Electrolyte Interphase between Lithium Metal and Lipon Via Cryogenic Electron Microscopy. Joule, 4 (2020), 11, 2484-2500CrossRefGoogle Scholar