Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T10:55:14.775Z Has data issue: false hasContentIssue false

Understanding transition metal dichalcogenide absorption line widths in electron energy loss spectroscopy

Published online by Cambridge University Press:  30 July 2021

Fuhui SHAO
Affiliation:
Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, United States
Steffi Y. Woo
Affiliation:
Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, United States
Nianjheng Wu
Affiliation:
Université Paris-Saclay, Institut des Sciences Moléculaires d'Orsay, United States
Andrew J. Mayne
Affiliation:
Université Paris-Saclay, Institut des Sciences Moléculaires d'Orsay, United States
Robert Schneider
Affiliation:
Institute of Physics and Center for Nanotechnology, University of Münster, Germany
Steffen Michaelis
Affiliation:
Institute of Physics and Center for Nanotechnology, University of Münster, Germany
Ashish Arora
Affiliation:
Institute of Physics and Center for Nanotechnology, University of Münster, Germany
Benjamin Carey
Affiliation:
Institute of Physics and Center for Nanotechnology, University of Münster, Germany
Johann Preuß
Affiliation:
Institute of Physics and Center for Nanotechnology, University of Münster, Germany
Rudolf Bratschitsch
Affiliation:
Institute of Physics and Center for Nanotechnology, University of Münster, Germany
Luiz H. G. Tizei
Affiliation:
Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France, France

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Advanced Imaging and Spectroscopy for Nanoscale Materials Characterization
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., & Roth, S. (2007). The structure of suspended graphene sheets. Nature, 446(7131), 6063.Google ScholarPubMed
Thomsen, J. D., Gunst, T., Gregersen, S. S., Gammelgaard, L., Jessen, B. S., et al. (2000). Suppression of intrinsic roughness in encapsulated graphene. Physical Review B, 96(1), 014101.CrossRefGoogle Scholar
Tizei, L. H. G., Lin, Y.-C., Mukai, M., Sawada, H., Lu, A.-Y., et al. (2015). Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials. Physical Review Letters, 114(10), ,107601.CrossRefGoogle ScholarPubMed
Gogoi, P. K., Lin, Y.-C., Senga, R., Komsa, H.-P., Wong, S. L., et al. (2019). Layer Rotation-Angle-Dependent Excitonic Absorption in Van der Waals Heterostructures Revealed by Electron Energy Loss Spectroscopy. ACS Nano. 13 (8), 9541-9550.Google Scholar
Arora, A., Wessling, N. K., Deilmann, T., Reichenauer, T., Steeger, P., et al. (2020). Dark trions govern the temperature-dependent optical absorption and emission of doped atomically thin semiconductors. Physical Review B, 101(24), 241413.Google Scholar
Bonnet, N., Lee, H. Y., Shao, F., Woo, Steffi Y., Blazit, J. D., et al. (2021). Nanoscale modification of WS2 trion emission by its local electromagnetic environment. ArXiv:2102.06140.Google Scholar