Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T06:06:40.405Z Has data issue: false hasContentIssue false

Two-Photon Imaging of Microbial Immunity in Living Tissues

Published online by Cambridge University Press:  30 July 2012

Jasmin Herz
Affiliation:
National Institute of Neurological Disorders and Stroke, The National Institutes of Health, Bethesda, MD 20892, USA
Bernd H. Zinselmeyer
Affiliation:
National Institute of Neurological Disorders and Stroke, The National Institutes of Health, Bethesda, MD 20892, USA
Dorian B. McGavern*
Affiliation:
National Institute of Neurological Disorders and Stroke, The National Institutes of Health, Bethesda, MD 20892, USA
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The immune system is highly evolved and can respond to infection throughout the body. Pathogen-specific immune cells are usually generated in secondary lymphoid tissues (e.g., spleen, lymph nodes) and then migrate to sites of infection where their functionality is shaped by the local milieu. Because immune cells are so heavily influenced by the infected tissue in which they reside, it is important that their interactions and dynamics be studied in vivo. Two-photon microscopy is a powerful approach to study host-immune interactions in living tissues, and recent technical advances in the field have enabled researchers to capture movies of immune cells and infectious agents operating in real time. These studies have shed light on pathogen entry and spread through intact tissues as well as the mechanisms by which innate and adaptive immune cells participate in thwarting infections. This review focuses on how two-photon microscopy can be used to study tissue-specific immune responses in vivo, and how this approach has advanced our understanding of host-immune interactions following infection.

Type
Special Section: Seventh Omaha Imaging Symposium
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdulreda, M.H., Faleo, G., Molano, R.D., Lopez-Cabezas, M., Molina, J., Tan, Y., Echeverria, O.A., Zahr-Akrawi, E., Rodriguez-Diaz, R., Edlund, P.K., Leibiger, I., Bayer, A.L., Perez, V., Ricordi, C., Caicedo, A., Pileggi, A. & Berggren, P.O. (2011). High-resolution, noninvasive longitudinal live imaging of immune responses. Proc Natl Acad Sci USA 108(31), 1286312868.CrossRefGoogle ScholarPubMed
Ai, H.W., Henderson, J.N., Remington, S.J. & Campbell, R.E. (2006). Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: Structural characterization and applications in fluorescence imaging. Biochem J 400(3), 531540.Google Scholar
Albota, M.A., Xu, C. & Webb, W.W. (1998). Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm. Appl Opt 37(31), 73527356.Google Scholar
Anandasabapathy, N., Victora, G.D., Meredith, M., Feder, R., Dong, B., Kluger, C., Yao, K., Dustin, M.L., Nussenzweig, M.C., Steinman, R.M. & Liu, K. (2011). Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J Exp Med 208(8), 16951705.Google Scholar
Aoshi, T., Zinselmeyer, B.H., Konjufca, V., Lynch, J.N., Zhang, X., Koide, Y. & Miller, M.J. (2008). Bacterial entry to the splenic white pulp initiates antigen presentation to CD8+ T cells. Immunity 29(3), 476486.CrossRefGoogle Scholar
Barretto, R.P., Ko, T.H., Jung, J.C., Wang, T.J., Capps, G., Waters, A.C., Ziv, Y., Attardo, A., Recht, L. & Schnitzer, M.J. (2011). Time-lapse imaging of disease progression in deep brain areas using fluorescence microendoscopy. Nat Med 17(2), 223228.Google Scholar
Bartholomaus, I., Kawakami, N., Odoardi, F., Schlager, C., Miljkovic, D., Ellwart, J.W., Klinkert, W.E., Flugel-Koch, C., Issekutz, T.B., Wekerle, H. & Flugel, A. (2009). Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462(7269), 9498.Google Scholar
Beattie, L., Peltan, A., Maroof, A., Kirby, A., Brown, N., Coles, M., Smith, D.F. & Kaye, P.M. (2010). Dynamic imaging of experimental Leishmania donovani-induced hepatic granulomas detects Kupffer cell-restricted antigen presentation to antigen-specific CD8 T cells. PLoS Pathog 6(3), e1000805. Google Scholar
Bousso, P., Bhakta, N.R., Lewis, R.S. & Robey, E. (2002). Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296(5574), 18761880.CrossRefGoogle ScholarPubMed
Bousso, P. & Robey, E. (2003). Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat Immunol 4(6), 579585.Google Scholar
Brockhaus, J., Moller, T. & Kettenmann, H. (1996). Phagocytozing ameboid microglial cells studied in a mouse corpus callosum slice preparation. Glia 16(1), 8190.3.0.CO;2-E>CrossRefGoogle Scholar
Bullen, A., Friedman, R.S. & Krummel, M.F. (2009). Two-photon imaging of the immune system: A custom technology platform for high-speed, multicolor tissue imaging of immune responses. Curr Top Microbiol Immunol 334, 129.Google Scholar
Bulloch, K., Miller, M.M., Gal-Toth, J., Milner, T.A., Gottfried-Blackmore, A., Waters, E.M., Kaunzner, U.W., Liu, K., Lindquist, R., Nussenzweig, M.C., Steinman, R.M. & McEwen, B.S. (2008). CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J Comp Neurol 508(5), 687710.CrossRefGoogle ScholarPubMed
Cavanagh, L.L., Bonasio, R., Mazo, I.B., Halin, C., Cheng, G., van der Velden, A.W., Cariappa, A., Chase, C., Russell, P., Starnbach, M.N., Koni, P.A., Pillai, S., Weninger, W. & von Andrian, U.H. (2005). Activation of bone marrow-resident memory T cells by circulating, antigen-bearing dendritic cells. Nat Immunol 6(10), 10291037.CrossRefGoogle ScholarPubMed
Chieppa, M., Rescigno, M., Huang, A.Y. & Germain, R.N. (2006). Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203(13), 28412852.CrossRefGoogle ScholarPubMed
Chtanova, T., Schaeffer, M., Han, S.J., van Dooren, G.G., Nollmann, M., Herzmark, P., Chan, S.W., Satija, H., Camfield, K., Aaron, H., Striepen, B. & Robey, E.A. (2008). Dynamics of neutrophil migration in lymph nodes during infection. Immunity 29(3), 487496.CrossRefGoogle ScholarPubMed
Coombes, J.L. & Robey, E.A. (2010). Dynamic imaging of host-pathogen interactions in vivo . Nat Rev Immunol 10(5), 353364.CrossRefGoogle ScholarPubMed
Denk, W., Strickler, J.H. & Webb, W.W. (1990). Two-photon laser scanning fluorescence microscopy. Science 248(4951), 7376.Google Scholar
Drobizhev, M., Makarov, N.S., Tillo, S.E., Hughes, T.E. & Rebane, A. (2011). Two-photon absorption properties of fluorescent proteins. Nat Methods 8(5), 393399.CrossRefGoogle ScholarPubMed
Egen, J.G., Rothfuchs, A.G., Feng, C.G., Horwitz, M.A., Sher, A. & Germain, R.N. (2011). Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity 34(5), 807819.CrossRefGoogle Scholar
Egen, J.G., Rothfuchs, A.G., Feng, C.G., Winter, N., Sher, A. & Germain, R.N. (2008). Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas. Immunity 28(2), 271284.CrossRefGoogle Scholar
Emonet, S.E., Urata, S. & de la Torre, J.C. (2011). Arenavirus reverse genetics: New approaches for the investigation of arenavirus biology and development of antiviral strategies. Virology 411(2), 416425.Google Scholar
Emonet, S.F., Garidou, L., McGavern, D.B. & de la Torre, J.C. (2009). Generation of recombinant lymphocytic choriomeningitis viruses with trisegmented genomes stably expressing two additional genes of interest. Proc Natl Acad Sci USA 106(9), 34733478.Google Scholar
Franken, P., Hill, A., Peters, C. & Weinreich, G. (1961). Generation of optical harmonics. Phys Rev Lett 7, 118119.CrossRefGoogle Scholar
Gebhardt, T., Whitney, P.G., Zaid, A., Mackay, L.K., Brooks, A.G., Heath, W.R., Carbone, F.R. & Mueller, S.N. (2011). Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477(7363), 216219.Google Scholar
Goeppert-Mayer, M. (1931). Über Elementarakte mit zwei Quantensprüngen. Ann Phys 9(3), 273295.Google Scholar
Heim, R., Cubitt, A.B. & Tsien, R.Y. (1995). Improved green fluorescence. Nature 373(6516), 663664.CrossRefGoogle ScholarPubMed
Hickman, H.D., Bennink, J.R. & Yewdell, J.W. (2009). Caught in the act: Intravital multiphoton microscopy of host-pathogen interactions. Cell Host Microbe 5(1), 1321.Google Scholar
Hickman, H.D., Li, L., Reynoso, G.V., Rubin, E.J., Skon, C.N., Mays, J.W., Gibbs, J., Schwartz, O., Bennink, J.R. & Yewdell, J.W. (2011). Chemokines control naive CD8+ T cell selection of optimal lymph node antigen presenting cells. J Exp Med 208(12), 25112524.Google Scholar
Hickman, H.D., Takeda, K., Skon, C.N., Murray, F.R., Hensley, S.E., Loomis, J., Barber, G.N., Bennink, J.R. & Yewdell, J.W. (2008). Direct priming of antiviral CD8+ T cells in the peripheral interfollicular region of lymph nodes. Nat Immunol 9(2), 155165.Google Scholar
Iannacone, M., Moseman, E.A., Tonti, E., Bosurgi, L., Junt, T., Henrickson, S.E., Whelan, S.P., Guidotti, L.G. & von Andrian, U.H. (2010). Subcapsular sinus macrophages prevent CNS invasion on peripheral infection with a neurotropic virus. Nature 465(7301), 10791083.Google Scholar
Jung, S., Aliberti, J., Graemmel, P., Sunshine, M.J., Kreutzberg, G.W., Sher, A. & Littman, D.R. (2000). Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11), 41064114.Google Scholar
Junt, T., Moseman, E.A., Iannacone, M., Massberg, S., Lang, P.A., Boes, M., Fink, K., Henrickson, S.E., Shayakhmetov, D.M., Di Paolo, N.C., van Rooijen, N., Mempel, T.R., Whelan, S.P. & von Andrian, U.H. (2007). Subcapsular sinus macrophages in lymph nodes clear lymph-borne viruses and present them to antiviral B cells. Nature 450(7166), 110114.CrossRefGoogle ScholarPubMed
Kaiser, W. & Garrett, C.G.B. (1961). Two-photon excitation in CaF2:Eu2+. Phys Rev Lett 9, 453.Google Scholar
Kang, S.S., Herz, J., Kim, J.V., Nayak, D., Stewart-Hutchinson, P., Dustin, M.L. & McGavern, D.B. (2011). Migration of cytotoxic lymphocytes in cell cycle permits local MHC I-dependent control of division at sites of viral infection. J Exp Med 208(4), 747759.CrossRefGoogle ScholarPubMed
Kang, S.S. & McGavern, D.B. (2008). Lymphocytic choriomeningitis infection of the central nervous system. Front Biosci 13, 45294543.Google Scholar
Kang, S.S. & McGavern, D.B. (2010). Microbial induction of vascular pathology in the CNS. J Neuroimmune Pharmacol 5(3), 370386.Google Scholar
Kim, J.V., Kang, S.S., Dustin, M.L. & McGavern, D.B. (2009). Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 457(7226), 191195.Google Scholar
Kobat, D., Horton, N.G. & Xu, C. (2011). In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J Biomed Opt 16(10), 106014. Google Scholar
Kreisel, D., Nava, R.G., Li, W., Zinselmeyer, B.H., Wang, B., Lai, J., Pless, R., Gelman, A.E., Krupnick, A.S. & Miller, M.J. (2010). In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc Natl Acad Sci USA 107(42), 1807318078.Google Scholar
Lin, A., Loughman, J.A., Zinselmeyer, B.H., Miller, M.J. & Caparon, M.G. (2009). Streptolysin S inhibits neutrophil recruitment during the early stages of Streptococcus pyogenes infection. Infect Immun 77(11), 51905201.Google Scholar
Lindquist, R.L., Shakhar, G., Dudziak, D., Wardemann, H., Eisenreich, T., Dustin, M.L. & Nussenzweig, M.C. (2004). Visualizing dendritic cell networks in vivo . Nat Immunol 5(12), 12431250.CrossRefGoogle ScholarPubMed
Looney, M.R., Thornton, E.E., Sen, D., Lamm, W.J., Glenny, R.W. & Krummel, M.F. (2011). Stabilized imaging of immune surveillance in the mouse lung. Nat Methods 8(1), 9196.Google Scholar
Mainen, Z.F., Maletic-Savatic, M., Shi, S.H., Hayashi, Y., Malinow, R. & Svoboda, K. (1999). Two-photon imaging in living brain slices. Methods 18(2), 231239.Google Scholar
Makarov, N.S., Drobizhev, M. & Rebane, A. (2008). Two-photon absorption standards in the 550–1600 nm excitation wavelength range. Opt Express 16(6), 40294047.Google Scholar
Mansson, L.E., Melican, K., Boekel, J., Sandoval, R.M., Hautefort, I., Tanner, G.A., Molitoris, B.A. & Richter-Dahlfors, A. (2007). Real-time studies of the progression of bacterial infections and immediate tissue responses in live animals. Cell Microbiol 9(2), 413424.CrossRefGoogle ScholarPubMed
Matheu, M.P., Beeton, C., Parker, I., Chandy, K.G. & Cahalan, M.D. (2008). Imaging effector memory T cells in the ear after induction of adoptive DTH. J Vis Exp 18, e907. Google Scholar
Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky, A.G., Markelov, M.L. & Lukyanov, S.A. (1999). Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17(10), 969973.CrossRefGoogle ScholarPubMed
McGavern, D.B. & Kang, S.S. (2011). Illuminating viral infections in the nervous system. Nat Rev Immunol 11(5), 318329.Google Scholar
Mempel, T.R., Henrickson, S.E. & Von Andrian, U.H. (2004). T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427(6970), 154159.CrossRefGoogle ScholarPubMed
Miller, M.J., Safrina, O., Parker, I. & Cahalan, M.D. (2004). Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J Exp Med 200(7), 847856.Google Scholar
Miller, M.J., Wei, S.H., Cahalan, M.D. & Parker, I. (2003). Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc Natl Acad Sci USA 100(5), 26042609.CrossRefGoogle ScholarPubMed
Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. (2002). Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296(5574), 18691873.Google Scholar
Mojzisova, H. & Vermot, J. (2011). When multiphoton microscopy sees near infrared. Curr Opin Genet Dev 21(5), 549557.CrossRefGoogle ScholarPubMed
Moulton, P.F. (1986). Spectroscopic and laser characteristics of Ti:Al2O3 . J Opt Soc Am B 3, 125133.CrossRefGoogle Scholar
Oxenius, A., Bachmann, M.F., Zinkernagel, R.M. & Hengartner, H. (1998). Virus-specific MHC-class II-restricted TCR-transgenic mice: Effects on humoral and cellular immune responses after viral infection. Eur J Immunol 28(1), 390400.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Peters, N.C., Egen, J.G., Secundino, N., Debrabant, A., Kimblin, N., Kamhawi, S., Lawyer, P., Fay, M.P., Germain, R.N. & Sacks, D. (2008). In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321(5891), 970974.CrossRefGoogle ScholarPubMed
Pircher, H., Burki, K., Lang, R., Hengartner, H. & Zinkernagel, R.M. (1989). Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342(6249), 559561.Google Scholar
Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G. & Cormier, M.J. (1992). Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2), 229233.Google Scholar
Schaeffer, M., Han, S.J., Chtanova, T., van Dooren, G.G., Herzmark, P., Chen, Y., Roysam, B., Striepen, B. & Robey, E.A. (2009). Dynamic imaging of T cell-parasite interactions in the brains of mice chronically infected with Toxoplasma gondii . J Immunol 182(10), 63796393.Google Scholar
Shakhar, G., Lindquist, R.L., Skokos, D., Dudziak, D., Huang, J.H., Nussenzweig, M.C. & Dustin, M.L. (2005). Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo . Nat Immunol 6(7), 707714.Google Scholar
Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N., Palmer, A.E. & Tsien, R.Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12), 15671572.Google Scholar
Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. (2005). A guide to choosing fluorescent proteins. Nat Methods 2(12), 905909.Google Scholar
Shapiro, E.M., Sharer, K., Skrtic, S. & Koretsky, A.P. (2006). In vivo detection of single cells by MRI. Magn Reson Med 55(2), 242249.CrossRefGoogle ScholarPubMed
Shimomura, O., Johnson, F.H. & Saiga, Y. (1962). Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59, 223239.Google Scholar
Vilela, M.C., Mansur, D.S., Lacerda-Queiroz, N., Rodrigues, D.H., Arantes, R.M., Kroon, E.G., Campos, M.A., Teixeira, M.M. & Teixeira, A.L. (2008). Traffic of leukocytes in the central nervous system is associated with chemokine up-regulation in a severe model of herpes simplex encephalitis: An intravital microscopy study. Neurosci Lett 445(1), 1822.Google Scholar
Waite, J.C., Leiner, I., Lauer, P., Rae, C.S., Barbet, G., Zheng, H., Portnoy, D.A., Pamer, E.G. & Dustin, M.L. (2011). Dynamic imaging of the effector immune response to listeria infection in vivo . PLoS Pathog 7(3), e1001326. CrossRefGoogle ScholarPubMed
Wei, S.H., Safrina, O., Yu, Y., Garrod, K.R., Cahalan, M.D. & Parker, I. (2007). Ca2+ signals in CD4+ T cells during early contacts with antigen-bearing dendritic cells in lymph node. J Immunol 179(3), 15861594.Google Scholar
Wilson, E.H., Harris, T.H., Mrass, P., John, B., Tait, E.D., Wu, G.F., Pepper, M., Wherry, E.J., Dzierzinski, F., Roos, D., Haydon, P.G., Laufer, T.M., Weninger, W. & Hunter, C.A. (2009). Behavior of parasite-specific effector CD8+ T cells in the brain and visualization of a kinesis-associated system of reticular fibers. Immunity 30(2), 300311.Google Scholar
Xu, H.T., Pan, F., Yang, G. & Gan, W.B. (2007). Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10(5), 549551.Google Scholar
Yang, G., Pan, F., Parkhurst, C.N., Grutzendler, J. & Gan, W.B. (2010). Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 5(2), 201208.Google Scholar
Zabow, G., Dodd, S., Moreland, J. & Koretsky, A. (2008). Micro-engineered local field control for high-sensitivity multispectral MRI. Nature 453(7198), 10581063.Google Scholar
Zinselmeyer, B.H., Dempster, J., Gurney, A.M., Wokosin, D., Miller, M., Ho, H., Millington, O.R., Smith, K.M., Rush, C.M., Parker, I., Cahalan, M., Brewer, J.M. & Garside, P. (2005). In situ characterization of CD4+ T cell behavior in mucosal and systemic lymphoid tissues during the induction of oral priming and tolerance. J Exp Med 201(11), 18151823.Google Scholar
Zinselmeyer, B.H., Dempster, J., Wokosin, D.L., Cannon, J.J., Pless, R., Parker, I. & Miller, M.J. (2009). Chapter 16. Two-photon microscopy and multidimensional analysis of cell dynamics. Methods Enzymol 461, 349378.Google Scholar
Zinselmeyer, B.H., Lynch, J.N., Zhang, X., Aoshi, T. & Miller, M.J. (2008). Video-rate two-photon imaging of mouse footpad—A promising model for studying leukocyte recruitment dynamics during inflammation. Inflamm Res 57(3), 9396.Google Scholar
Zipfel, W.R., Williams, R.M., Christie, R., Nikitin, A.Y., Hyman, B.T. & Webb, W.W. (2003). Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. Proc Natl Acad Sci USA 100(12), 70757080.Google Scholar
Zoumi, A., Yeh, A. & Tromberg, B.J. (2002). Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 99(17), 1101411019.CrossRefGoogle ScholarPubMed

Herz Supplementary Movie 1

Supplementary Movie 1. Dynamics of antiviral CD8 and CD4 T cells. A representative time lapse of a three-dimensional (3D) reconstruction shows CFP+ LCMV-specific CD8 T cells (green) and GFP+ LCMV-specific CD4 T cells in the splenic red (RP) and white (WP) pulp 7 days following an i.v. infection with LCMV. Z-stacks (50 mm in depth) were collected every 30 s. Collagen is shown in pink and autofluorescence in blue. The white hashed line denotes the border between the splenic RP and WP.

Download Herz Supplementary Movie 1(Video)
Video 17 MB

Herz Supplementary Movie 2

Supplementary Movie 2. Anatomy of brain myeloid cells in naïve versus LCMV-infected mice. A side-by-side comparison of brain macrophages and microglia (green) is shown for mock infected CX3CR1-GFP+/- mice (left) versus mice infected intracerebrally with LCMV (right). Each z-stack is 100 um in depth and was collected with a 2.5-um step interval. Skull bone is shown in blue.

Download Herz Supplementary Movie 2(Video)
Video 3.5 MB

Herz Supplementary Movie 3

Supplementary Movie 3. Dynamics of CNS myeloid cells following LCMV infection. Representative time lapses of 3D reconstructions show the dynamics of monocytes, macrophages, and microglia (green) in the brains of uninfected (left) and LCMV-DsRed (right) infected CX3CR1-GFP+/- mice. LCMV infection (right panel, red) increases monocytic surveillance of blood vessels and induces the generation of highly reactive microglia/macrophages. Note the aggregation of myeloid cells in areas of viral infection (white arrow). Blood vessels (red) in the left panel are shown in red. Skull bone in both panels is blue.

Download Herz Supplementary Movie 3(Video)
Video 36.4 MB