Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T23:31:11.503Z Has data issue: false hasContentIssue false

Thrombin-Mediated Platelet Activation of Lysed Whole Blood and Platelet-Rich Plasma: A Comparison Between Platelet Activation Markers and Ultrastructural Alterations

Published online by Cambridge University Press:  22 June 2016

Tanya N. Augustine*
Affiliation:
School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
Wendy J. van der Spuy
Affiliation:
School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
Lindsay L. Kaberry
Affiliation:
School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
Millicent Shayi
Affiliation:
School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
*
*Corresponding author. [email protected]
Get access

Abstract

Platelet ultrastructural alterations representing spurious activation have been identified in pathological conditions. A limitation of platelet studies is that sample preparation may lead to artifactual activation processes which may confound results, impacting the use of scanning electron microscopy as a supplemental diagnostic tool. We used scanning electron microscopy and flow cytometry to analyze platelet activation in platelet-rich plasma (PRP) and whole blood (WB) samples. PRP generated using a single high g force centrifugation, and WB samples treated with a red blood cell lysis buffer, were exposed to increasing concentrations of the agonist thrombin. Platelets in lysed WB samples responded to thrombin by elevating the activation marker CD62p definitively, with corresponding ultrastructural changes indicating activation. Conversely, CD62p expression in PRP preparations remained static. Ultrastructural analysis revealed fully activated platelets even under low concentration thrombin stimulation, with considerable fibrin deposition. It is proposed that the method for PRP production induced premature platelet activation, preventable by using an inhibitor of platelet aggregation and fibrin polymerization. Nevertheless, our results show a definitive correspondence between flow cytometry and scanning electron microscopy in platelet activation studies, highlighting the potential of the latter technique as a supplemental diagnostic tool.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akrawinthawong, K., Park, J.W., Piknova, B., Sibmooh, N., Fucharoen, S. & Schechter, A.N. (2014). A flow cytometric analysis of the inhibition of platelet reactivity due to nitrite reduction by deoxygenated erythrocytes. PLoS One 9(3), e92435.Google Scholar
Bolton-Maggs, P.H.B., Chalmers, E., Collins, P.W., Harrison, P., Kitchen, S., Liesner, R.J., Minford, A., Mumford, A.D., Parapia, L., Perry, D.J., Watson, S.P., Wilde, J.T. & Williams, M.D. (2006). A review of inherited platelet disorders with guidelines for their management on behalf of the UKHCDO. Brit J Haematol 135(5), 603633.Google Scholar
Bouchard, B.A., Gissel, M.T., Whelihan, M.F. & Mann, K.G. (2014). Platelets do not express the oxidized or reduced forms of tissue factor. Biochim Biophys Acta 1840(3), 11881193.Google Scholar
Brass, L.F. (2003). Thrombin and platelet activation. Chest 124, 1825.Google Scholar
Cambien, B. & Wagner, D.D. (2004). A new role in hemostasis for the adhesion receptor P-selectin. Trends Mol Med 10(4), 180186.Google Scholar
Capodanno, D., Ferreiro, J.L. & Angiolillo, D.J. (2013). Antiplatelet therapy: New pharmacological agents and changing paradigms. J Thromb Haemost 11(Suppl 1), 316329.Google Scholar
Chandler, W.L. (2013). Microparticle counts in platelet-rich and platelet-free plasma, effect of centrifugation and sample-processing protocols. Blood Coagul Fibrinolysis 24(2), 125132.Google Scholar
Coughlin, S.R. (2000). Thrombin signalling and protease-activated receptors. Nature 407, 258264.Google Scholar
De Cuyper, I.M., Meinders, M., van de Vijver, E., de Korte, D., Porcelijn, L., de Haas, M., Eble, J., Seeger, K., Rutella, S., Pagliara, D., Kuijpers, T.W. & Verhoeven, A.J. (2013). A novel flow cytometry-based platelet aggregation assay. Blood 121(10), 7080.Google Scholar
Dean, W.L., Lee, M.J., Cummins, T.D., Schultz, D.J. & David, W. (2010). Proteomic and functional characterisation of platelet microparticle size classes. Thromb Haem 102(4), 711718.Google Scholar
Di Cera, E. (2001). Thrombin. Mol Aspects Med 29, 203254.Google Scholar
Falanga, A., Russo, L. & Verzeroli, C. (2013). Mechanisms of thrombosis in cancer. Thromb Res 131, 559562.Google Scholar
Fernández-Barbero, J.E., Galindo-Moreno, P., Ávila-Ortiz, G., Caba, O., Sánchez-Fernández, E. & Wang, H.L. (2006). Flow cytometric and morphological characterization of platelet-rich plasma gel. Clin Oral Implants Res 17(6), 687693.Google Scholar
Gresele, P. (2013). Antiplatelet agents in clinical practice and their haemorrhagic risk. Blood Transfus 11, 349356.Google Scholar
Headland, S.E., Jones, H.R., D’Sa, A.S.V., Perretti, M. & Norling, L.V. (2014). Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry. Sci Rep 4, 5237.Google Scholar
Hughes, M., Hayward, C.P.M., Warkentin, T.E., Horsewood, P., Chorneyko, K.A. & Kelton, J.G. (2000). Morphological analysis of microparticulate generation in heparin-induced thrombocytopenia. Blood 96(1), 188194.Google Scholar
Kuwahara, M., Sugimoto, M., Tsuji, S., Matsui, H., Mizuno, T., Miyata, S. & Yashioka, A. (2002). Platelet shape changes and adhesion under high shear flow. Arterioscler Thromb Vasc Biol 22, 329334.Google Scholar
Leytin, V., Allen, D.J., Mykhaylov, S., Mis, L., Lyubimov, E.V., Garvey, B. & Freedman, J. (2004). Pathologic high shear stress induces apoptosis events in human platelets. Biochem Biophys Res Comm 320(2), 303310.Google Scholar
Leytin, V., Mody, M., Semple, J.W., Garvey, B. & Freedman, J. (2000). Flow cytometric parameters for characterizing platelet activation by measuring P-Selectin (CD62) expression: theoretical consideration and evaluation in thrombin treated platelet populations. Biochem Biophys Res Commun 269, 8590.Google Scholar
Li, N., Hu, H. & Hjemdahl, P. (2003). Aspirin treatment does not attenuate platelet or leukocyte activation as monitored by whole blood flow cytometry. Thromb Res 111(3), 165170.Google Scholar
Marquardt, L., Ruf, A., Mansmann, U., Winter, R., Schuler, M., Buggle, F., Mayer, H. & Grau, A.J. (2002). Course of platelet activation markers after ischemic stroke. Stroke 33(11), 25702574.Google Scholar
Michelson, A.D., Barnard, M.R., Krueger, L.A., Frelinger, A.L. & Furman, M.I. (2000). Evaluation of platelet function by flow cytometry. Methods 270, 259270.Google Scholar
McEver, R.P. (1994). Selectins. Curr Opin Immunol 6, 7584.Google Scholar
Naik, U.P. & Parise, L.V. (1997). Structure and function of platelet αIIb/β3. Curr Opin Hematol 4, 317322.Google Scholar
Picker, S.M. (2011). In-vitro assessment of platelet function. Transfus Apher Sci 44(3), 305319.Google Scholar
Pretorius, E., Engelbrecht, M.-J. & Duim, W. (2012). Thromboembolic ischemic stroke and the presence of necrotic platelets: a scanning electron microscopy investigation. Ultrastruct Pathol 36(1), 1922.Google Scholar
Pretorius, E., Oberholzer, H.M., Smit, E., Steyn, E., Briedenhann, S. & Franz, C.R. (2008). Ultrastructural changes in platelet aggregates of HIV patients: A scanning electron microscopy study. Ultrastruct Pathol 32(3), 7579.Google Scholar
Pretorius, E., Swanepoel, A.C., Oberholzer, H.M., van der Spuy, W.J., Duim, W. & Wessels, P.F. (2011). A descriptive investigation of the ultrastructure of fibrin networks in thrombo-embolic ischemic stroke. J Thromb Thrombolysis 31(4), 507513.Google Scholar
Rechner, A.R. (2011). Platelet function testing in clinical diagnostics. Hämostaseologie 31(2), 7987.Google Scholar
Tamimi, F.M., Montalvo, S., Tresguerres, I. & Jerez, L.B. (2007). A comparative study of 2 methods for obtaining platelet-rich plasma. J Oral Maxillofacial Surg 65(6), 10841093.Google Scholar
Undas, A. & Ariëns, R.A. (2011). Fibrin clot structure and function: A role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol 31, e88e99.Google Scholar
Van der Spuy, W.J. & Pretorius, E. (2013). A place for ultrastructural analysis of platelets in cerebral ischemic research. Micros Res Techniq 76(8), 795802.Google Scholar
Van Velzen, J.F., Laros-Van Gorkom, B.P., Pop, G.M. & Van Heerde, W.L. (2012). Multicolor flow cytometry for evaluation of platelet surface antigens and activation markers. Thromb Res 130(1), 9298.Google Scholar
White, J.G. (1972). Interaction of membrane systems in blood platelets. Am J Pathol 66, 295312.Google Scholar
White, J.G. (2002). Morphology and ultrastructure of platelets. In Platelets in Thrombotic and Non-Thrombotic Disorders: Pathophysiology, Pharmacology and Therapeutics, Gresele, P., Page, C.P., Fuster V. & Vermylen, J. (Eds.), pp. 4169. Cambridge, New York: Cambridge University Press.Google Scholar
White, J.G. & Clawson, C.C. (1980). The surface-connected canalicular system of blood platelets – A fenestrated membrane system. Am J Pathol 101, 353364.Google Scholar
Wolberg, A.S., Monroe, D.M., Roberts, H.R. & Hoffman, M. (2003). Elevated prothrombin results in clots with an altered fibrin structure: A possible mechanism of the increased thrombotic risk. Blood 101(8), 30083013.Google Scholar
Zwicker, J.I., Furie, B.C. & Furie, B. (2007). Cancer-associated thrombosis. Crit Rev Oncol Hematol 62(2), 126136.Google Scholar