Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T17:52:51.545Z Has data issue: false hasContentIssue false

Three-Dimensional Nanoscale Mapping of State-of-the-Art Field-Effect Transistors (FinFETs)

Published online by Cambridge University Press:  31 August 2017

Pritesh Parikh
Affiliation:
Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
Corey Senowitz
Affiliation:
Qualcomm Technologies, Inc., 5775 Morehouse Drive, San Diego, CA 92121, USA
Don Lyons
Affiliation:
Qualcomm Technologies, Inc., 5775 Morehouse Drive, San Diego, CA 92121, USA
Isabelle Martin
Affiliation:
CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711, USA
Ty J. Prosa
Affiliation:
CAMECA Instruments, Inc., 5500 Nobel Drive, Madison, WI 53711, USA
Michael DiBattista*
Affiliation:
Varioscale, Inc., 1782 La Costa Meadows Dr #103, San Marcos, CA 92078, USA
Arun Devaraj
Affiliation:
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352, USA
Y. Shirley Meng*
Affiliation:
Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*
*Corresponding authors. [email protected]; [email protected]
*Corresponding authors. [email protected]; [email protected]
Get access

Abstract

The semiconductor industry has seen tremendous progress over the last few decades with continuous reduction in transistor size to improve device performance. Miniaturization of devices has led to changes in the dopants and dielectric layers incorporated. As the gradual shift from two-dimensional metal-oxide semiconductor field-effect transistor to three-dimensional (3D) field-effect transistors (finFETs) occurred, it has become imperative to understand compositional variability with nanoscale spatial resolution. Compositional changes can affect device performance primarily through fluctuations in threshold voltage and channel current density. Traditional techniques such as scanning electron microscope and focused ion beam no longer provide the required resolution to probe the physical structure and chemical composition of individual fins. Hence advanced multimodal characterization approaches are required to better understand electronic devices. Herein, we report the study of 14 nm commercial finFETs using atom probe tomography (APT) and scanning transmission electron microscopy–energy-dispersive X-ray spectroscopy (STEM-EDS). Complimentary compositional maps were obtained using both techniques with analysis of the gate dielectrics and silicon fin. APT additionally provided 3D information and allowed analysis of the distribution of low atomic number dopant elements (e.g., boron), which are elusive when using STEM-EDS.

Type
Materials Science Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baravelli, E., Jurczak, M., Speciale, N., Meyer, K.D. & Dixit, A. (2008). Impact of LER and random dopant fluctuations on FinFET matching performance. IEEE Trans Nanotechnol 7, 291298.Google Scholar
Bardeen, J. & Brattain, W.H. (1948). The transistor, a semi-conductor triode. Phys Rev 74, 230231.CrossRefGoogle Scholar
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617620.Google Scholar
Bernstein, K., Frank, D.J., Gattiker, A.E., Haensch, W., Ji, B.L., Nassif, S.R., Nowak, E.J., Pearson, D.J. & Rohrer, N.J. (2006). High-performance CMOS variability in the 65-nm regime and beyond. IBM J Res Dev 50, 433449.CrossRefGoogle Scholar
Bohr, M. (2011). The evolution of scaling from the homogeneous era to the heterogeneous era. IEEE International Electron Devices Meeting, Washington, DC, pp. 1.1.1–1.1.6.CrossRefGoogle Scholar
Bruce, M.R., Bruce, V.J., Eppes, D.H., Wilcox, J., Cole, E., Tangyunyong, P., Hawkins, C.F. & Ring, R. (2003). Soft defect localization (SDL) in integrated circuits using laser scanning microscopy. 16th Annual Meeting of the IEEE Conference. LEOS, Tucson, Arizona, pp. 662–663.Google Scholar
Chih-Tang, S. (1988). Evolution of the MOS transistor-from conception to VLSI. IEEE Proc 76, 12801326.Google Scholar
Deal, B.E. & Early, J.M. (1979). The evolution of silicon semiconductor technology: 1952–1977. J Electrochem Soc 126, 20C32C.Google Scholar
Devaraj, A., Colby, R., Vurpillot, F. & Thevuthasan, S. (2014). Understanding atom probe tomography of oxide-supported metal nanoparticles by correlation with atomic-resolution electron microscopy and field evaporation simulation. J Phys Chem Lett 5, 13611367.Google Scholar
Devaraj, A., Perea, D.E., Liu, J., Gordon, L.M., Prosa, T.J., Parikh, P., Diercks, D.R., Meher, S., Kolli, R.P., Meng, Y.S. & Thevuthasan, S. (2017). Three-dimensional nanoscale characterisation of materials by atom probe tomography. Int Mater Rev, doi:10.1080/09506608.2016.1270728.Google Scholar
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy. New York: Springer.Google Scholar
Gilbert, M., Vandervorst, W., Koelling, S. & Kambham, A.K. (2011). Atom probe analysis of a 3D finFET with high-k metal gate. Ultramicroscopy 111, 530534.CrossRefGoogle ScholarPubMed
Grenier, A., Duguay, S., Barnes, J.P., Serra, R., Haberfehlner, G., Cooper, D., Bertin, F., Barraud, S., Audoit, G., Arnoldi, L., Cadel, E., Chabli, A. & Vurpillot, F. (2014). 3D analysis of advanced nano-devices using electron and atom probe tomography. Ultramicroscopy 136, 185192.Google Scholar
Han, B., Takamizawa, H., Shimizu, Y., Inoue, K., Nagai, Y., Yano, F., Kunimune, Y., Inoue, M. & Nishida, A. (2015). Phosphorus and boron diffusion paths in polycrystalline silicon gate of a trench-type three-dimensional metal-oxide-semiconductor field effect transistor investigated by atom probe tomography. Appl Phys Lett 107, 023506.Google Scholar
Hatzistergos, M.S., Hopstaken, M., Kim, E., Vanamurthy, L. & Shaffer, J.F. (2013). Characterization of 3D dopant distribution in state of the art finFET structures. Microsc Microanal 19, 960961.Google Scholar
Hayase, Y., Hara, K., Ogata, S., Zhang, L., Akutsu, H., Kurihara, M., Norimatsu, K. & Nagamine, S. (2012). Applications of site-specific scanning spreading resistance microscopy (SSRM) to failure analysis of production lines. 12th International Workshop on Junction Technology, Shanghai, China, pp. 146–149.Google Scholar
Hisamoto, D., Lee, W.C., Kedzierski, J., Takeuchi, H., Asano, K., Kuo, C., Anderson, E., King, T.J., Bokor, J. & Hu, C. (2000). FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans Electron Devices 47, 23202325.Google Scholar
Inoue, K., Yano, F., Nishida, A., Takamizawa, H., Tsunomura, T., Nagai, Y. & Hasegawa, M. (2009). Dopant distributions in n-MOSFET structure observed by atom probe tomography. Ultramicroscopy 109, 14791484.Google Scholar
Kambham, A.K., Kumar, A., Florakis, A. & Vandervorst, W. (2013a). Three-dimensional doping and diffusion in nano scaled devices as studied by atom probe tomography. Nanotechnology 24, 275705.Google Scholar
Kambham, A.K., Kumar, A., Gilbert, M. & Vandervorst, W. (2013b). 3D site specific sample preparation and analysis of 3D devices (FinFETs) by atom probe tomography. Ultramicroscopy 132, 6569.Google Scholar
Kambham, A.K., Mody, J., Gilbert, M., Koelling, S. & Vandervorst, W. (2011). Atom-probe for FinFET dopant characterization. Ultramicroscopy 111, 535539.Google Scholar
Kambham, A.K., Zschaetzsch, G., Sasaki, Y., Togo, M., Horiguchi, N., Mody, J., Florakis, A., Gajula, D.R., Kumar, A., Gilbert, M. & Vandervorst, W. (2012). Atom probe tomography for 3D-dopant analysis in FinFET devices. Symposium on VLSI Technology, Honolulu, Hawaii, pp. 77–78.Google Scholar
Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R.L., Bunton, J.H., Olson, J.D. & Gorman, B.P. (2007). Atom probe tomography of electronic materials. Annu Rev Mater Res 37, 681727.Google Scholar
Koelling, S., Innocenti, N., Hellings, G., Gilbert, M., Kambham, A.K., De Meyer, K. & Vandervorst, W. (2011). Characteristics of cross-sectional atom probe analysis on semiconductor structures. Ultramicroscopy 111, 540545.Google Scholar
Koelling, S., Li, A., Cavalli, A., Assali, S., Car, D., Gazibegovic, S., Bakkers, E.P.A.M. & Koenraad, P.M. (2017). Atom-by-atom analysis of semiconductor nanowires with parts per million sensitivity. Nano Lett 17, 599605.Google Scholar
Larson, D., Alvis, R., Lawrence, D., Prosa, T., Ulfig, R., Reinhard, D., Clifton, P., Gerstl, S., Bunton, J., Lenz, D., Kelly, T. & Stiller, K. (2008). Analysis of bulk dielectrics with atom probe tomography. Microsc Microanal 14, 12541255.Google Scholar
Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A. & Smith, G.D.W. (1999). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79, 287293.Google Scholar
Larson, D.J., Lawrence, D., Lefebvre, W., Olson, D., Prosa, T.J., Reinhard, D.A., Ulfig, R.M., Clifton, P.H., Bunton, J.H., Lenz, D., Olson, J.D., Renaud, L., Martin, I. & Kelly, T.F. (2011). Toward atom probe tomography of microelectronic devices. J Phys Conf Ser 326, 012030.CrossRefGoogle Scholar
Larson, D.J., Prosa, T.J., Ulfig, R.M., Geiser, B.P. & Kelly, T.F. (2013). Local Electrode Atom Probe Tomography. New York: Springer.CrossRefGoogle Scholar
Lawrence, D., Alvis, R. & Olson, D. (2008). Specimen preparation for cross-section atom probe analysis. Microsc Microanal 14, 10041005.Google Scholar
Lefebvre-Ulrikson, W., Vurpillot, F. & Sauvage, X. (2016). Atom Probe Tomography: Put Theory into Practice. Amsterdam, Netherlands: Elsevier.Google Scholar
Lin, Y.-S., Puthenkovilakam, R. & Chang, J.P. (2002). Dielectric property and thermal stability of HfO2 on silicon. Appl Phys Lett 81, 20412043.CrossRefGoogle Scholar
Madaan, N., Bao, J., Nandasiri, M., Xu, Z., Thevuthasan, S. & Devaraj, A. (2015). Impact of dynamic specimen shape evolution on the atom probe tomography results of doped epitaxial oxide multilayers: Comparison of experiment and simulation. Appl Phys Lett 107, 091601.Google Scholar
Mano, M.M. (1979). Digital Logic and Computer Design. Upper Saddle River, NJ: Prentice Hall PTR.Google Scholar
Miller, M.K. & Forbes, R.G. (2014). Atom-Probe Tomography. Boston, MA: Springer.Google Scholar
Moore, G.E. (1965). Cramming more components onto integrated circuits. Electronics 38, 114.Google Scholar
Nikawa, K., Inoue, S., Morimoto, K. & Sone, S. (1999). Failure analysis case studies using the IR-OBIRCH (infrared optical beam induced resistance change) method. Proceedings of the 8th Asian Test Symposium, Shanghai, China, pp. 394–399.Google Scholar
Panciera, F., Hoummada, K., Gregoire, M., Juhel, M., Lorut, F., Bicais, N. & Mangelinck, D. (2013). Atom probe tomography of SRAM transistors: Specimen preparation methods and analysis. Microelectron Eng 107, 167172.Google Scholar
Pei, G., Kedzierski, J., Oldiges, P., Ieong, M. & Kan, E.C.C. (2002). FinFET design considerations based on 3-D simulation and analytical modeling. IEEE Trans Electron Devices 49, 14111419.Google Scholar
Phang, J.C.H., Chan, D.S.H., Palaniappan, M., Chin, J.M., Davis, B., Bruce, M., Wilcox, J., Gilfeather, G., Chua, C.M., Koh, L.S., Ng, H.Y. & Tan, S.H. (2004). A review of laser induced techniques for microelectronic failure analysis. Proceedings of the 11th International Symposium on Physical and Failure Analysis of Integrated Circuits, Taiwan, pp. 255–261.Google Scholar
Shiying, X. & Bokor, J. (2003). Sensitivity of double-gate and finfet devices to process variations. IEEE Trans Electron Devices 50, 22552261.Google Scholar
Takamizawa, H., Shimizu, Y., Nozawa, Y., Toyama, T., Morita, H., Yabuuchi, Y., Ogura, M. & Nagai, Y. (2012). Dopant characterization in self-regulatory plasma doped fin field-effect transistors by atom probe tomography. Appl Phys Lett 100, 093502.Google Scholar
Thompson, K., Flaitz, P.L., Ronsheim, P., Larson, D.J. & Kelly, T.F. (2007). Imaging of arsenic Cottrell atmospheres around silicon defects by three-dimensional atom probe tomography. Science 317, 13701374.Google Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.Google Scholar
Thompson, S.E. & Parthasarathy, S. (2006). Moore’s law: The future of Si microelectronics. Mater Today 9, 2025.Google Scholar
Ulfig, R., Thompson, K., Alvis, R., Larson, D. & Ronsheim, P. (2007). Three dimensional compositional characterization of dielectric films with LEAP tomography. Microsc Microanal 13, 828.CrossRefGoogle Scholar
Vurpillot, F., Gruber, M., Da Costa, G., Martin, I., Renaud, L. & Bostel, A. (2011). Pragmatic reconstruction methods in atom probe tomography. Ultramicroscopy 111, 12861294.Google Scholar
Wang, X., Brown, A.R., Cheng, B. & Asenov, A. (2011). Statistical variability and reliability in nanoscale FinFETs. International Electron Devices Meeting, 5.4.1–5.4.4.Google Scholar
Weste, N.H. & Eshraghian, K. (1985). Principles of CMOS VLSI Design, 188. Boston, MA: Addison-Wesley.Google Scholar
Zhang, L., Ohuchi, K., Adachi, K., Ishimaru, K., Takayanagi, M. & Nishiyama, A. (2007). High-resolution characterization of ultrashallow junctions by measuring in vacuum with scanning spreading resistance microscopy. Appl Phys Lett 90, 192103.Google Scholar

Parikh et al supplementary material

Parikh et al supplementary material 1

Download Parikh et al supplementary material(Video)
Video 11 MB
Supplementary material: File

Parikh et al supplementary material

Parikh et al supplementary material 2

Download Parikh et al supplementary material(File)
File 1.6 MB